Landmarks for Numeric Planning Problems

The paper generalises the notion of landmarks for reasoning about planning problems involving propositional and numeric variables. Intuitively, numeric landmarks are regions in the metric space defined by the problem whose crossing is necessary for its resolution. The paper proposes a relaxationbased method for their automated extraction directly from the problem structure, and shows how to exploit them to infer what we call disjunctive and additive hybrid action landmarks. The justification of such a disjunctive representation results from the intertwined propositional and numeric structure of the problem. The paper exercises their use in two novel admissible LP-Based numeric heuristics, and reports experiments on cost-optimal numeric planning problems. Results show the heuristics are more informed and effective than previous work for problems involving a higher number of (sub)goals.

[1]  Patrik Haslum,et al.  Interval-Based Relaxation for General Numeric Planning , 2016, ECAI.

[2]  Hector Geffner,et al.  Modeling and Computation in Planning: Better Heuristics from More Expressive Languages , 2015, ICAPS.

[3]  Ivan Serina,et al.  An approach to efficient planning with numerical fluents and multi-criteria plan quality , 2008, Artif. Intell..

[4]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[5]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[6]  Andrew Coles,et al.  Forward-Chaining Partial-Order Planning , 2010, ICAPS.

[7]  Maria Fox,et al.  PDDL2.1: An Extension to PDDL for Expressing Temporal Planning Domains , 2003, J. Artif. Intell. Res..

[8]  Robert Mattmüller,et al.  Using the Context-enhanced Additive Heuristic for Temporal and Numeric Planning , 2009, ICAPS.

[9]  Bernhard Nebel,et al.  A Planning Based Framework for Controlling Hybrid Systems , 2012, ICAPS.

[10]  Patrik Haslum,et al.  Temporal Landmarks: What Must Happen, and When , 2015, ICAPS.

[11]  Malte Helmert,et al.  Sound and Complete Landmarks for And/Or Graphs , 2010, ECAI.

[12]  Patrik Haslum,et al.  Numeric Planning with Disjunctive Global Constraints via SMT , 2016, ICAPS.

[13]  Paolo Traverso,et al.  Automated planning - theory and practice , 2004 .

[14]  Patrik Haslum,et al.  Improving Delete Relaxation Heuristics Through Explicitly Represented Conjunctions , 2014, J. Artif. Intell. Res..

[15]  Andrew Coles,et al.  LPRPG-P: Relaxed Plan Heuristics for Planning with Preferences , 2011, ICAPS.

[16]  Jörg Hoffmann,et al.  Ordered Landmarks in Planning , 2004, J. Artif. Intell. Res..

[17]  Maria Fox,et al.  Modelling Mixed Discrete-Continuous Domains for Planning , 2006, J. Artif. Intell. Res..

[18]  Blai Bonet,et al.  LP-Based Heuristics for Cost-Optimal Planning , 2014, ICAPS.

[19]  Maria Fox,et al.  Automatic Construction of Efficient Multiple Battery Usage Policies , 2011, IJCAI.

[20]  Erez Karpas,et al.  Sensible Agent Technology Improving Coordination and Communication in Biosurveillance Domains , 2009, IJCAI.

[21]  Jörg Hoffmann,et al.  The Metric-FF Planning System: Translating ''Ignoring Delete Lists'' to Numeric State Variables , 2003, J. Artif. Intell. Res..

[22]  Susanne Biundo-Stephan,et al.  Improving Hierarchical Planning Performance by the Use of Landmarks , 2012, AAAI.

[23]  Patrik Haslum,et al.  Minimal Landmarks for Optimal Delete-Free Planning , 2012, ICAPS.

[24]  Lise Getoor,et al.  Effective Redundant Constraints for Online Scheduling , 1997, AAAI/IAAI.

[25]  Benedetto Intrigila,et al.  UPMurphi: A Tool for Universal Planning on PDDL+ Problems , 2009, ICAPS.

[26]  Patrik Haslum,et al.  Heuristics for Numeric Planning via Subgoaling , 2016, IJCAI.

[27]  Malte Helmert,et al.  Decidability and Undecidability Results for Planning with Numerical State Variables , 2002, PuK.

[28]  Egon Balas,et al.  programming: Properties of the convex hull of feasible points * , 1998 .