A Multiscale Model of Electrochemical Double Layers in Energy Conversion and Storage Devices

In this paper we report a statistical-mechanics-based continuum theory allowing tackling the simulation of electrochemical double layers under non-equilibrium conditions at electrolyte/electrode interfaces relevant to electrochemical cells for energy conversion and storage. The present theory is designed to capture the impact onto the overall electrode behavior of the electrolyte composition in terms of solvent, charged polymers and ions concentration, for a large diversity of cases, from diluted solutions to ionic liquids. From its continuum character, the theory is particularly useful for the simulation of interfacial electrochemical mechanisms within multiscale frameworks scaling up atomistic and molecular level properties onto overall performance cell models. Results obtained with our home-made MS LIBER-T simulation package are presented and discussed within the context of fuel cells and lithium ion batteries.

[1]  J. Kirkwood Theoretical Studies upon Dipolar Ions. , 1939 .

[2]  K. E. Newman Kirkwood–Buff solution theory: derivation and applications , 1994 .

[3]  Andrew B. Bocarsly,et al.  Silicon Oxide Nafion Composite Membranes for Proton-Exchange Membrane Fuel Cell Operation at 80-140°C , 2002 .

[4]  J. Tarascon,et al.  New electrolyte compositions stable over the 0 to 5 V voltage range and compatible with the Li1+xMn2O4/carbon Li-ion cells , 1994 .

[5]  Aleš Iglič,et al.  Generalized stern models of the electric double layer considering the spatial variation of permittvity and finite size of ions in saturation regime , 2011, Cellular & Molecular Biology Letters.

[6]  M. Bazant,et al.  Asymptotic Analysis of Diffuse-Layer Effects on Time-Dependent Interfacial Kinetics , 2000, cond-mat/0006104.

[7]  M. A. Vorotyntsev,et al.  Aspects of conductivity and space charge phenomena in solid electrolytes , 1978 .

[8]  P. Berg,et al.  Effects of Finite-size Ions and Relative Permittivity in a Nanopore Model of a Polymer Electrolyte Membrane , 2014 .

[9]  Martin Z. Bazant,et al.  Diffuse Charge Effects in Fuel Cell Membranes , 2009 .

[10]  Martin Z Bazant,et al.  Surface conservation laws at microscopically diffuse interfaces. , 2007, Journal of colloid and interface science.

[11]  Alejandro A. Franco,et al.  Multiscale modelling and numerical simulation of rechargeable lithium ion batteries: concepts, methods and challenges , 2013 .

[12]  M. Bazant,et al.  Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  A. T. Conlisk,et al.  A lithium-ion battery model including electrical double layer effects , 2014 .

[14]  M. Bazant,et al.  Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  T. Fuller,et al.  A Historical Perspective of Fuel Cell Technology in the 20th Century , 2002 .

[16]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[17]  C. Pomelli,et al.  Ionic liquids: Solvation ability and polarity , 2009 .

[18]  H. Orland,et al.  Dielectric constant of ionic solutions: a field-theory approach. , 2012, Physical review letters.

[19]  Nir Ben-Tal,et al.  Statistical mechanics of a Coulomb gas with finite size particles: A lattice field theory approach , 1995 .

[20]  M. Ciureanu,et al.  PEM fuel cells as membrane reactors: kinetic analysis by impedance spectroscopy , 2003 .

[21]  I. Rouzina,et al.  Influence of Ligand Spatial Organization on Competitive Electrostatic Binding to DNA , 1996 .

[22]  Sebastian Doniach,et al.  Evaluation of ion binding to DNA duplexes using a size-modified Poisson-Boltzmann theory. , 2007, Biophysical journal.

[23]  A. N. Frumkin,et al.  The Double Layer in Electrochemistry , 1960 .

[24]  D. Aurbach,et al.  On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries , 2002 .

[25]  Ursula van Rienen,et al.  Langevin Poisson-Boltzmann equation: point-like ions and water dipoles near a charged surface. , 2011, General physiology and biophysics.

[26]  Alejandro A. Franco,et al.  Carbon-Based Electrodes for Lithium Air Batteries: Scientific and Technological Challenges from a Modeling Perspective , 2013 .

[27]  E. Hasselbrink,et al.  Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations , 2004, Electrophoresis.

[28]  Alejandro A. Franco,et al.  Impact of the Cathode Microstructure on the Discharge Performance of Lithium Air Batteries: A Multiscale Model , 2014 .

[29]  L. Pollack,et al.  Physics and Astronomy Faculty Publications Physics and Astronomy Spatial Distribution of Competing Ions around Dna in Solution , 2022 .

[30]  A. Frumkin,et al.  Wasserstoffüberspannung und Struktur der Doppelschicht , 1933 .

[31]  P. Taberna,et al.  On the molecular origin of supercapacitance in nanoporous carbon electrodes. , 2012, Nature materials.

[32]  M. A. Vorotyntsev,et al.  Nonlocal dielectric response of the electrode/solvent interface in the double layer problem , 1981 .

[33]  É. Itskovich,et al.  Electric current across the metal–solid electrolyte interface I. Direct current, current–voltage characteristic , 1977 .

[34]  J. Kirkwood,et al.  The Statistical Mechanical Theory of Solutions. I , 1951 .

[35]  P. Bruce,et al.  A Reversible and Higher-Rate Li-O2 Battery , 2012, Science.

[36]  Fan Yang,et al.  Dynamic diffuse double-layer model for the electrochemistry of nanometer-sized electrodes. , 2006, The journal of physical chemistry. B.

[37]  Bernhard Maschke,et al.  A Dynamic Mechanistic Model of an Electrochemical Interface , 2006 .

[38]  Y. C. Zhou,et al.  Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes II: size effects on ionic distributions and diffusion-reaction rates. , 2011, Biophysical journal.

[39]  Laurent Pilon,et al.  Simulations of Cyclic Voltammetry for Electric Double Layers in Asymmetric Electrolytes: A Generalized Modified Poisson–Nernst–Planck Model , 2013, The Journal of Physical Chemistry C.

[40]  P. Taberna,et al.  High temperature carbon–carbon supercapacitor using ionic liquid as electrolyte , 2007 .

[41]  Sanjeev Mukerjee,et al.  Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium−Air Battery , 2010 .

[42]  A. Franco,et al.  Microstructure-based modeling of aging mechanisms in catalyst layers of polymer electrolyte fuel cells. , 2011, The journal of physical chemistry. B.

[43]  O. Petrii,et al.  Potentials of zero total and zero free charge of platinum group metals , 1975 .

[44]  Incorporation of excluded-volume correlations into Poisson-Boltzmann theory. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  J. Tomasi,et al.  Quantum mechanical continuum solvation models. , 2005, Chemical reviews.

[46]  C. Jallut,et al.  A Multi‐Scale Dynamic Mechanistic Model for the Transient Analysis of PEFCs , 2007 .

[47]  N. Marković,et al.  Three Phase Interfaces at Electrified Metal−Solid Electrolyte Systems 1. Study of the Pt(hkl)−Nafion Interface , 2010 .

[48]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[49]  Frederick J. Milford,et al.  Foundations of Electromagnetic Theory , 1961 .

[50]  Andrzej Anderko,et al.  Computation of dielectric constants of solvent mixtures and electrolyte solutions , 2001 .

[51]  Daniel P. Abraham,et al.  Atomistic Modeling of the Electrode–Electrolyte Interface in Li-Ion Energy Storage Systems: Electrolyte Structuring , 2013 .

[52]  Mario Blanco,et al.  Computational Study of the Mechanisms of Superoxide-Induced Decomposition of Organic Carbonate-Based Electrolytes , 2011 .

[53]  C. Jallut,et al.  A multiscale physical model of a polymer electrolyte membrane water electrolyzer , 2013 .

[54]  Brian E. Conway,et al.  The dielectric constant of the solution in the diffuse and Helmholtz double layers at a charged interface in aqueous solution , 1951 .

[55]  H. Orland,et al.  Steric Effects in Electrolytes: A Modified Poisson-Boltzmann Equation , 1997, cond-mat/9803258.

[56]  Philippe Sautet,et al.  A multiscale theoretical methodology for the calculation of electrochemical observables from ab initio data: Application to the oxygen reduction reaction in a Pt(111)-based polymer electrolyte membrane fuel cell , 2011 .

[57]  David Andelman,et al.  Dipolar Poisson-Boltzmann equation: ions and dipoles close to charge interfaces. , 2007, Physical review letters.

[58]  Jason Graetz,et al.  Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes. , 2011, Journal of the American Chemical Society.