Spectral Preconditioners for Nonhydrostatic Atmospheric Models

Abstract The elliptic problems in semi-implicit nonhydrostatic atmospheric models are difficult. Typically, they are poorly conditioned, nonseparable, contain cross-derivative terms, and are often nonsymmetric. Here, the resulting linear system is solved using a preconditioned Krylov subspace method—the generalized conjugate residual (GCR) algorithm. A horizontal spectral preconditioner is developed as an alternative to a more standard and much simpler line Jacobi relaxation scheme. However, the efficacy of the spectral preconditioner requires neglecting the cross-derivative terms and homogenization (e.g., averaging) metric coefficients over the computational domain. Because such a compromise causes a substantial departure of the preconditioner from the original elliptic operator, it is not obvious a priori whether it leads to a competitive solver. The robustness of the proposed approach over a broad range of representative meteorological applications is evaluated, in the context of a three-time-level sem...

[1]  R. Garcia,et al.  Propagation and Breaking at High Altitudes of Gravity Waves Excited by Tropospheric Forcing , 1996 .

[2]  Tatsushi Tokioka,et al.  Some Considerations on Vertical Differencing , 1978 .

[3]  Piotr K. Smolarkiewicz,et al.  VLES modelling of geophysical fluids with nonoscillatory forward‐in‐time schemes , 2002 .

[4]  Stephen J. Thomas,et al.  A new adiabatic kernel for the MC2 model , 1998 .

[5]  Ronald B. Smith Linear theory of stratified hydrostatic flow past an isolated mountain , 1980 .

[6]  Len G. Margolin,et al.  On Forward-in-Time Differencing for Fluids: an Eulerian/Semi-Lagrangian Non-Hydrostatic Model for Stratified Flows , 1997 .

[7]  Tuomo Kauranne,et al.  On the Parallelization of Global Spectral Weather Models , 1994, Parallel Comput..

[8]  Richard C. J. Somerville,et al.  On the use of a coordinate transformation for the solution of the Navier-Stokes equations , 1975 .

[9]  Len G. Margolin,et al.  On Forward-in-Time Differencing for Fluids: Stopping Criteria for Iterative Solutions of Anelastic Pressure Equations , 1997 .

[10]  Akio Arakawa,et al.  Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model , 1977 .

[11]  John R. Rice,et al.  Direct solution of partial difference equations by tensor product methods , 1964 .

[12]  M. Tapp,et al.  A non‐hydrostatic mesoscale model , 1976 .

[13]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[14]  William Bourke,et al.  A multi-level spectral model. I. Formulation and hemispheric integrations , 1974 .

[15]  S. Eisenstat,et al.  Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .

[16]  A. Robert Bubble Convection Experiments with a Semi-implicit Formulation of the Euler Equations , 1993 .

[17]  Roland W. Freund,et al.  A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems , 1993, SIAM J. Sci. Comput..

[18]  P. Smolarkiewicz,et al.  A multiscale anelastic model for meteorological research , 2002 .

[19]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[20]  Stephen J. Thomas,et al.  An Ensemble Analysis of Forecast Errors Related to Floating Point Performance , 2002 .

[21]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[22]  P. Bernardet,et al.  The Pressure Term in the Anelastic Model: A Symmetric Elliptic Solver for an Arakawa C Grid in Generalized Coordinates , 1995 .

[23]  M. Desgagné,et al.  The Canadian MC2: A Semi-Lagrangian, Semi-Implicit Wideband Atmospheric Model Suited for Finescale Process Studies and Simulation , 1997 .

[24]  R. Sweet,et al.  Fast Fourier transforms for direct solution of Poisson's equation with staggered boundary conditions , 1988 .

[25]  Roar Skålin Scalability of Parallel Gridpoint Limited-Area Atmospheric Models. Part II: Semi-Implicit Time-Integration Schemes , 1997 .

[26]  Véronique Ducrocq,et al.  The Meso-NH Atmospheric Simulation System. Part I: adiabatic formulation and control simulations , 1997 .

[27]  Piotr K. Smolarkiewicz,et al.  Preconditioned Conjugate-Residual Solvers for Helmholtz Equations in Nonhydrostatic Models , 1997 .

[28]  M. Cullen A test of a semi‐implicit integration technique for a fully compressible non‐hydrostatic model , 1990 .

[29]  Ulrich Schumann,et al.  Three-Dimensional Mass- and Momentum-Consistent Helmholtz-Equation in Terrain-Following Coordinates , 1984 .

[30]  H. Kapitza,et al.  The non-hydrostatic mesoscale model GESIMA. I : Dynamical equations and tests , 1992 .

[31]  Ionel Michael Navon,et al.  Domain decomposition and parallel processing of a finite element model of the shallow water equations , 1993 .

[32]  P. Smolarkiewicz,et al.  A class of semi-Lagrangian approximations for fluids. , 1992 .

[33]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[34]  André Robert,et al.  A stable numerical integration scheme for the primitive meteorological equations , 1981 .

[35]  Kazuo Saito,et al.  3-D Mountain Waves by the Lokal-Modell of DWD and the MRI Mesoscale Nonhydrostatic Model. , 1998 .

[36]  Dianne P. O'Leary,et al.  Efficient Iterative Solution of the Three-Dimensional Helmholtz Equation , 1998 .

[37]  Jean Côté,et al.  The CMC-MRB Global Environmental Multiscale (GEM) Model. Part III: Nonhydrostatic Formulation , 2002 .

[38]  H. Davies,et al.  A lateral boundary formulation for multi-level prediction models. [numerical weather forecasting , 1976 .

[39]  Stephen Mudrick,et al.  On the implementation of the GMRES(m) method to elliptic equations in meteorology , 1992 .

[40]  Monique Tanguay,et al.  A Semi-implicit Send-Lagrangian Fully Compressible Regional Forecast Model , 1990 .

[41]  Roland A. Sweet Direct methods for the solution of Poisson's equation on a staggered grid , 1973 .

[42]  A. Robert,et al.  A semi-Lagrangian and semi-implicit numerical integration scheme for multilevel atmospheric models , 1985 .

[43]  G. Doms,et al.  Semi-Implicit Scheme for the DWD Lokal-Modell , 2000 .

[44]  René Laprise,et al.  The Formulation of the Andr Robert MC (Mesoscale Compressible Community) Model , 1997 .

[45]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[46]  B. Golding An efficient non-hydrostatic forecast model , 1992 .

[47]  P. K. Smolarkiewicz,et al.  VARIATIONAL METHODS FOR ELLIPTIC PROBLEMS IN FLUID MODELS , 2000 .

[48]  L. Perelman,et al.  Hydrostatic, quasi‐hydrostatic, and nonhydrostatic ocean modeling , 1997 .

[49]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .