Necessary and Sufficient Condition for Global Controllability of Planar Affine Nonlinear Systems

In this correspondence, we will investigate the global controllability of general planar affine nonlinear systems, and present a simple necessary and sufficient condition for global controllability. The analysis is carried out in detail, which is based on some basic facts in planar topology such as the Jordan curve Theorem, and in the geometrical theory of ordinary differential equations including the Poincare-Bendixson Theorem. Furthermore, we will also discuss the global controllability for higher dimensional affine nonlinear system with a triangular-like structure.

[1]  Wei-Liang Chow Über Systeme von linearen partiellen Differential-gleichungen erster Ordnung , 1941 .

[2]  Dirk Aeyels Local and global controllability for nonlinear systems , 1984 .

[3]  Sun Yimin,et al.  On global controllability of affine nonlinear systems with a triangular-like structure , 2007 .

[4]  S. V. Emel'yanov,et al.  Analysis of controllability by methods of the theory of approximative groups and systems on foliations , 1988 .

[5]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[6]  Louis R. Hunt,et al.  n -Dimensional controllability with (n-1) controls , 1982 .

[7]  H. Sussmann Orbits of families of vector fields and integrability of distributions , 1973 .

[8]  H. Whitney Analytic Extensions of Differentiable Functions Defined in Closed Sets , 1934 .

[9]  Daizhan Cheng,et al.  Speed regulation of permanent magnet synchronous motor via feedback dissipative hamiltonian realisation , 2007 .

[10]  H. Hermes On Local and Global Controllability , 1974 .

[11]  J. Hale,et al.  Ordinary Differential Equations , 2019, Fundamentals of Numerical Mathematics for Physicists and Engineers.

[12]  V. Jurdjevic Geometric control theory , 1996 .

[14]  L. R. Hunt Global controllability of nonlinear systems in two dimensions , 2005, Mathematical systems theory.

[15]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[16]  A. Isidori,et al.  Global external linearization of nonlinear systems via feedback , 1985 .

[17]  Wei-Liang Chow Über Systeme von liearren partiellen Differentialgleichungen erster Ordnung , 1940 .

[18]  A. Blumberg BASIC TOPOLOGY , 2002 .

[19]  D. L. Lukes Global Controllability of Nonlinear Systems , 1972 .

[20]  Closed trajectories and global controllability in the plane , 1997 .

[21]  V. Arnold,et al.  Ordinary Differential Equations , 1973 .

[22]  A. D. Lewis,et al.  Geometric Control of Mechanical Systems , 2004, IEEE Transactions on Automatic Control.

[23]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[24]  H. Sussmann,et al.  Controllability of nonlinear systems , 1972 .

[25]  A. Krener,et al.  Nonlinear controllability and observability , 1977 .

[26]  Peter E. Caines,et al.  On the Global Controllability of Nonlinear Systems: Fountains, Recurrence, and Applications to Hamiltonian Systems , 2002, SIAM J. Control. Optim..

[27]  Lei Guo,et al.  On Controllability of Some Classes of Affine Nonlinear Systems , 2006 .

[28]  A. Butkovskiy Phase Portraits of Control Dynamical Systems , 1990 .

[29]  R. Brockett System Theory on Group Manifolds and Coset Spaces , 1972 .

[30]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[31]  H. Hermes,et al.  Nonlinear Controllability via Lie Theory , 1970 .

[32]  C. Lobry Contr^olabilite des systemes non lineaires , 1970 .

[33]  A. Isidori Nonlinear Control Systems , 1985 .

[34]  William Fulton Algebraic Topology: A First Course , 1995 .

[35]  E. Coddington,et al.  Theory of Ordinary Differential Equations , 1955 .

[36]  S. V. Emel'yanov,et al.  Application of foliation theory and approximative groups to controllability analysis of nonlinear systems , 1992 .

[37]  S. Nikitin Global Controllability and Stabilization of Nonlinear Systems , 1994 .