Exploring the heterogeneity for node importance byvon Neumann entropy

[1]  W. Zachary,et al.  An Information Flow Model for Conflict and Fission in Small Groups , 1977, Journal of Anthropological Research.

[2]  Michael O. Albertson,et al.  The Irregularity of a Graph , 1997, Ars Comb..

[3]  DALE KENT. The Rise of the Medici: Faction in Florence, 1426-1434. Pp. viii, 389. New York: Oxford University Press, 1978. $37.50 , 1981 .

[4]  Alex Bavelas,et al.  Communication Patterns in Task‐Oriented Groups , 1950 .

[5]  Edwin R. Hancock,et al.  Graph characterizations from von Neumann entropy , 2012, Pattern Recognit. Lett..

[6]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[7]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[8]  M. Fiedler Laplacian of graphs and algebraic connectivity , 1989 .

[9]  D. L. Powers Graph Partitioning by Eigenvectors , 1988 .

[10]  Richard C. Wilson,et al.  Approximate von Neumann entropy for directed graphs. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Christos Faloutsos,et al.  Graph evolution: Densification and shrinking diameters , 2006, TKDD.

[12]  L. Freeman Centrality in social networks conceptual clarification , 1978 .

[13]  P. Holland,et al.  Transitivity in Structural Models of Small Groups , 1971 .

[14]  Markus Koppenberger,et al.  Topology of music recommendation networks. , 2006, Chaos.

[15]  Sameer A. Nene,et al.  Columbia Object Image Library (COIL100) , 1996 .

[16]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[17]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[18]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[19]  P. Pattison,et al.  Cumulated social roles: The duality of persons and their algebras☆ , 1986 .

[20]  K P Harikrishnan,et al.  Measure for degree heterogeneity in complex networks and its application to recurrence network analysis , 2016, Royal Society Open Science.

[21]  F. Harary,et al.  Structural Models in Anthropology , 1986 .

[22]  Hernán A. Makse,et al.  Influence maximization in complex networks through optimal percolation , 2015, Nature.

[23]  E. Schwimmer Exchange In The Social Structure Of The Orokaiva: Traditional And Emergent Ideologies In The Northern District Of Papua , 1970 .

[24]  T. Snijders The degree variance: An index of graph heterogeneity , 1981 .

[25]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[26]  Alston S. Householder,et al.  Unitary Triangularization of a Nonsymmetric Matrix , 1958, JACM.

[27]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[28]  Simone Severini,et al.  The von Neumann Entropy of Networks , 2008 .

[29]  F. Chung Laplacians and the Cheeger Inequality for Directed Graphs , 2005 .

[30]  Edwin R. Hancock,et al.  Characterizing Graphs Using Approximate von Neumann Entropy , 2011, IbPRIA.

[31]  Gert Sabidussi,et al.  The centrality index of a graph , 1966 .

[32]  Edwin R. Hancock,et al.  Entropy versus Heterogeneity for Graphs , 2011, GbRPR.

[33]  F. K. Bell A note on the irregularity of graphs , 1992 .

[34]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[35]  Ernesto Estrada Quantifying network heterogeneity. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Mathew D. Penrose,et al.  Random Geometric Graphs , 2003 .

[37]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[38]  Leonard M. Freeman,et al.  A set of measures of centrality based upon betweenness , 1977 .

[39]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[40]  Chiara Orsini,et al.  Evolution of the Internet $k$-Dense Structure , 2013, IEEE/ACM Transactions on Networking.