A predicative and decidable characterization of the polynomial classes of languages

Characterizations of PTIME, PSPACE, the polynomial hierarchy and its elements are given, which are decidable (membership can be decided by syntactic inspection to the constructions), predicative (according to points of view by Leivant and others), and are obtained by means of increasing restrictions to course-of-values recursion on trees (represented in a dialect of Lisp).

[1]  Yehoshua Bar-Hillel,et al.  The Intrinsic Computational Difficulty of Functions , 1969 .

[2]  K. Schütte Beweistheoretische Untersuchung der verzweigten Analysis , 1951 .

[3]  H. E. Rose Subrecursion: Functions and Hierarchies , 1984 .

[4]  Miroslaw Kutylowski A Generalized Grzegorczyk Hierarchy and Low Complexity Classes , 1987, Inf. Comput..

[5]  Salvatore Caporaso,et al.  Undecidability vs transfinite induction for the consistency of hyperarithmetical sets , 1980, Arch. Math. Log..

[6]  Salvatore Caporaso Safe Turing Machines, Grzegorczyk Classes and Polytime , 1996, Int. J. Found. Comput. Sci..

[7]  Celia Wrathall,et al.  Rudimentary Predicates and Relative Computation , 1978, SIAM J. Comput..

[8]  H. Keisler,et al.  Handbook of mathematical logic , 1977 .

[9]  Joseph R. Shoenfield The axioms of set theory , 1977 .

[10]  Daniel Leivant,et al.  A foundational delineation of computational feasibility , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[11]  Michele Zito,et al.  On a relation between uniform coding and problems of the form DTIMEF( $\cal F$) =? DSPACEF( $\cal F)$ , 1998, Acta Informatica.

[12]  Daniel Leivant,et al.  Lambda Calculus Characterizations of Poly-Time , 1993, Fundam. Informaticae.

[13]  S. Bellantoni,et al.  Predicative recursion and computational complexity , 1992 .

[14]  Robert W. Ritchie,et al.  CLASSES OF PREDICTABLY COMPUTABLE FUNCTIONS , 1963 .

[15]  Stephen Bellantoni Predicative Recursion and The Polytime Hierarchy , 1995 .

[16]  Stephen A. Cook,et al.  A new recursion-theoretic characterization of the polytime functions (extended abstract) , 1992, STOC '92.

[17]  外史 竹内 Bounded Arithmetic と計算量の根本問題 , 1996 .

[18]  H. Poincaré,et al.  Les Mathematiques et la Logique. , 1906 .

[19]  S. C. Kleene,et al.  Introduction to Metamathematics , 1952 .

[20]  H. Schwichtenberg,et al.  Rekursionszahlen und die Grzegorczyk-Hierarchie , 1969 .

[21]  Vincent D. Blondel Structured Numbers. Properties of a hierarchy of internal operations in binary tress , 1998 .