Exploring optimal controller parameters for complex industrial systems

Tuning controller parameters to achieve desired system performance is challenging, especially for complex systems. Many heuristic methods are proposed to solve the problem. Because there are many system performance indices, such as response time and overshoot, it is difficult for these methods to achieve desired system performance due to system complexity, noise and uncertainties etc. This paper proposes an automated parameter tuning method, Gaussian Process Regression surrogated Bayesian Optimization Algorithm (GPRBOA), based on the required system performance for complex industrial systems. Because proportional-integral-derivative (PID) controller is widely used in industry, it is used as an example to demonstrate how the proposed method works. GPRBOA is applied to optimize the PID parameters by iteratively updating the system model and optimizing the system performance. Simulations have been performed and the results demonstrate the effectiveness of the proposed method.

[1]  Yu Ding,et al.  GPLP: A Local and Parallel Computation Toolbox for Gaussian Process Regression , 2012, J. Mach. Learn. Res..

[2]  David E. Goldberg,et al.  Multi-objective bayesian optimization algorithm , 2002 .

[3]  Jiadong Yang,et al.  Task Scheduling for Heterogeneous Computing Based on Bayesian Optimization Algorithm , 2009, 2009 International Conference on Computational Intelligence and Security.

[4]  Jian Zhou,et al.  Process optimization of injection molding using an adaptive surrogate model with Gaussian process approach , 2007 .

[5]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .

[6]  M. S. Kumar,et al.  Comparison of Tuning Methods of PID Controllers for FOPTD System , 2014 .

[7]  Hugh F. Durrant-Whyte,et al.  Gaussian Process modeling of large scale terrain , 2009, ICRA.

[8]  Tor Arne Johansen,et al.  Explicit stochastic predictive control of combustion plants based on Gaussian process models , 2008, Autom..

[9]  Markus Schneider,et al.  Robot Learning by Demonstration with local Gaussian process regression , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[10]  Wolfram Burgard,et al.  Using Gaussian Process Regression for Efficient Motion Planning in Environments with Deformable Objects , 2011, Automated Action Planning for Autonomous Mobile Robots.

[11]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[12]  Arturo Y. Jaen-Cuellar,et al.  PID-Controller Tuning Optimization with Genetic Algorithms in Servo Systems , 2013 .

[13]  Marcus R. Frean,et al.  Using Gaussian Processes to Optimize Expensive Functions , 2008, Australasian Conference on Artificial Intelligence.

[14]  Fabio Tozeto Ramos,et al.  Bayesian optimisation for Intelligent Environmental Monitoring , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[15]  D. Goldberg,et al.  BOA: the Bayesian optimization algorithm , 1999 .

[16]  David E. Goldberg,et al.  Model accuracy in the Bayesian optimization algorithm , 2011, Soft Comput..

[17]  Jan K. Sykulski,et al.  An Enhanced Probability of Improvement Utility Function for Locating Pareto Optimal Solutions , 2007 .

[18]  Radomil Matousek,et al.  HC12: Efficient Method in Optimal PID Tuning , 2011 .

[19]  Salah Sukkarieh,et al.  A Gaussian process-based RRT planner for the exploration of an unknown and cluttered environment with a UAV , 2013, Adv. Robotics.

[20]  Joe Falco,et al.  Best Practices and Performance Metrics Using Force Control for Robotic Assembly , 2012 .

[21]  Eric Moulines,et al.  On Upper-Confidence Bound Policies for Switching Bandit Problems , 2011, ALT.

[22]  Mahdi Jadaliha,et al.  Gaussian Process Regression for Sensor Networks Under Localization Uncertainty , 2013, IEEE Transactions on Signal Processing.

[23]  Bogdan Filipic,et al.  Optimization of Gaussian Process Models with Evolutionary Algorithms , 2011, ICANNGA.

[24]  Roman Garnett,et al.  Bayesian optimization for sensor set selection , 2010, IPSN '10.

[25]  Stuart Bennett,et al.  A History of Control Engineering 1930-1955 , 1993 .