Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A

The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1–3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region. Owing to the region’s extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods—recursive partitioning and regression—to pinpoint disease susceptibility to the MHC class I genes HLA-B and HLA-A (risk ratios >1.5; Pcombined = 2.01 × 10-19 and 2.35 × 10-13, respectively) in addition to the established associations of the MHC class II genes. Other loci with smaller and/or rarer effects might also be involved, but to find these, future searches must take into account both the HLA class II and class I genes and use even larger samples. Taken together with previous studies, we conclude that MHC-class-I-mediated events, principally involving HLA-B*39, contribute to the aetiology of type 1 diabetes.

Simon C. Potter | C. Spencer | A. Silman | M. McCarthy | P. Deloukas | E. Zeggini | J. Marchini | D. Strachan | M. Tobin | D. Clair | D. Grozeva | N. Craddock | S. Hunt | C. Lindgren | D. Clayton | L. Cardon | A. Duncanson | D. Kwiatkowski | W. Ouwehand | N. Samani | J. Todd | J. Barrett | D. Davison | D. Easton | David Evans | A. Attwood | J. Boorman | B. Cant | Ursula Everson | Judith M. Hussey | J. Jolley | A. S. Knight | K. Koch | Elizabeth Meech | S. Nutland | C. Prowse | H. Stevens | G. Walters | N. Walker | N. Watkins | T. Winzer | W. McArdle | S. Ring | M. Pembrey | S. Caesar | K. Gordon-Smith | L. Jones | C. Fraser | E. Green | M. Hamshere | P. Holmans | V. Moskvina | I. Nikolov | A. Elkin | A. Farmer | R. Williamson | P. McGuffin | I. Ferrier | S. Ball | A. Balmforth | J. Barrett | D. Bishop | M. Iles | A. Maqbool | N. Yuldasheva | A. Hall | P. Braund | R. Dixon | M. Mangino | S. Stevens | J. Thompson | F. Bredin | M. Tremelling | M. Parkes | H. Drummond | C. Lees | E. Nimmo | J. Satsangi | S. Fisher | C. Lewis | Clive M. Onnie | N. Prescott | J. Sanderson | C. Mathew | J. Barbour | M. Mohiuddin | J. Mansfield | Fraser Cummings | D. Jewell | J. Webster | Morris J. Brown | A. Dominiczak | B. Burke | J. Gungadoo | P. Munroe | S. Newhouse | A. Onipinla | C. Wallace | M. Xue | M. Caulfield | M. Farrall | I. Bruce | S. Eyre | S. Hider | A. Hinks | S. John | C. Potter | D. Symmons | W. Thomson | B. Widmer | T. Frayling | R. Freathy | H. Lango | B. Shields | M. Weedon | A. Hattersley | G. Hitman | C. Groves | N. W. Rayner | N. Timpson | M. Newport | G. Sirugo | F. Vannberg | L. Bradbury | C. Farrar | J. Franklyn | J. Heward | M. Simmonds | S. Gough | S. Seal | M. Ban | A. Goris | S. Sawcer | A. Compston | D. Conway | M. Jallow | K. Rockett | S. Bumpstead | Amy Chaney | K. Downes | R. Gwilliam | M. Inouye | A. Keniry | R. McGinnis | S. Potter | R. Ravindrarajah | P. Whittaker | D. Withers | T. Ferreira | Joanne Pereira-Gale | Z. Su | Y. Teo | Damjan Vukcevic | D. Bentley | A. Compston | S. Nejentsev | K. Elliott | J. Ghori | G. Ribas | R. Campbell | L. Maier | Matthew Hardy | J. Howson | D. Smyth | J. Cooper | C. Todhunter | Jennifer J. Pointon | Jeffrey S. Szeszko | S. Field | P. Reynolds | Erna King | J. Masters | John S Hulme | Rebecca Bailey | C. Braga | M. Owen | I. Jones | Tariq Ahmad | G. Lathrop | G. Kirov | Jane Worthington | Mark Walker | P. Wordsworth | Andrew P. Morris | Emily J. Lyons | Niall J. Cardin | G. Breen | Bryan N. Howie | A. H. Young | P. Donnelly | A. Hill | N. Taylor | Kate L. Lee | Niall Cardin | Michael C. O’Donovan | D. A. Collier | A. Barton | Nazneen Rahman | C. Bryan | Matthew A. Brown | Andrew P Morris | Michael R. Stratton | H. Leung | Hannah Donovan | Paul D. Gilbert | D. B. Dunger | Alastair Forbes | Richard J. B. Dobson | J. Perry | Erna King | Paul R. Burton | Richard Jones | J. Connell | Emma King | Ingeleif B. Hallgrimsdottir | M. McCarthy | M. O’Donovan | M. Stratton | C. Lewis | Abiodun K Onipinla | Pamela Reynolds | Alastair Compston | M. McCarthy | C. Spencer | Catherine E. Todhunter | Simon C. Potter | A. Forbes | Andrew Keniry | Suzanne E Stevens | C. Potter | Sarah F. Field

[1]  M. Stone Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[2]  J. Todd,et al.  HLA-DQβ gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus , 1987, Nature.

[3]  J. Todd,et al.  HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. , 1987, Nature.

[4]  K. Yamagata,et al.  Mononuclear cell infiltration and its relation to the expression of major histocompatibility complex antigens and adhesion molecules in pancreas biopsy specimens from newly diagnosed insulin-dependent diabetes mellitus patients. , 1993, The Journal of clinical investigation.

[5]  R. Jaenisch,et al.  β2-Microglobulin–Deficient NOD Mice Do Not Develop Insulitis or Diabetes , 1994, Diabetes.

[6]  M. Honeyman,et al.  Analysis of Families at Risk for Insulin-Dependent Diabetes Mellitus Reveals that HLA Antigens Influence Progression to Clinical Disease , 1995, Molecular medicine.

[7]  T. Utsugi,et al.  Major Histocompatibility Complex Class I–Restricted Infiltration and Destruction of Pancreatic Islets by NOD Mouse-Derived β-Cell Cytotoxic CD8+ T-Cell Clones In Vivo , 1996, Diabetes.

[8]  W. Klitz,et al.  The role of HLA class II genes in insulin-dependent diabetes mellitus: molecular analysis of 180 Caucasian, multiplex families. , 1996, American journal of human genetics.

[9]  J. Todd,et al.  The predisposition to type 1 diabetes linked to the human leukocyte antigen complex includes at least one non-class II gene. , 1999, American journal of human genetics.

[10]  J. Ilonen,et al.  Non-class II HLA gene associated with type 1 diabetes maps to the 240-kb region near HLA-B. , 2000, Diabetes.

[11]  B P Koeleman,et al.  Evaluation of fine mapping strategies for a multifactorial disease locus: systematic linkage and association analysis of IDDM1 in the HLA region on chromosome 6p21. , 2000, Human molecular genetics.

[12]  J. Todd,et al.  A correlation between the relative predisposition of MHC class II alleles to type 1 diabetes and the structure of their proteins. , 2001, Human molecular genetics.

[13]  H. Erlich,et al.  The HLA class I A locus affects susceptibility to type 1 diabetes. , 2002, Human immunology.

[14]  D. Serreze,et al.  Functional evidence for the mediation of diabetogenic T cell responses by HLA-A2.1 MHC class I molecules through transgenic expression in NOD mice , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[15]  D. Clayton,et al.  A unified stepwise regression procedure for evaluating the relative effects of polymorphisms within a gene using case/control or family data: application to HLA in type 1 diabetes. , 2002, American journal of human genetics.

[16]  C. Liddle,et al.  The histopathology of the pancreas in Type I (insulin-dependent) diabetes mellitus: a 25-year review of deaths in patients under 20 years of age in the United Kingdom , 1986, Diabetologia.

[17]  P. A. Biro,et al.  A gene in the HLA class I region contributes to susceptibility to IDDM in the Finnish population , 1994, Diabetologia.

[18]  Christophe Benoist,et al.  Natural killer cells distinguish innocuous and destructive forms of pancreatic islet autoimmunity. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[19]  J. Drijfhout,et al.  Autoreactive CD8 T cells associated with β cell destruction in type 1 diabetes , 2005 .

[20]  D. Clayton,et al.  Population structure, differential bias and genomic control in a large-scale, case-control association study , 2005, Nature Genetics.

[21]  H. Erlich,et al.  Human leukocyte antigen class I B and C loci contribute to Type 1 Diabetes (T1D) susceptibility and age at T1D onset. , 2005, Human immunology.

[22]  J. Drijfhout,et al.  Autoreactive CD8 T cells associated with beta cell destruction in type 1 diabetes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[23]  P. Concannon,et al.  Extended DR3-D6S273-HLA-B haplotypes are associated with increased susceptibility to type 1 diabetes in US Caucasians. , 2005, Tissue antigens.

[24]  M. Rewers,et al.  Extreme genetic risk for type 1A diabetes , 2006, Proceedings of the National Academy of Sciences.

[25]  Gustavo Glusman,et al.  Genetic mapping at 3-kilobase resolution reveals inositol 1,4,5-triphosphate receptor 3 as a risk factor for type 1 diabetes in Sweden. , 2006, American journal of human genetics.

[26]  R. A. Bailey,et al.  Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes , 2007, Nature Genetics.

[27]  High Density SNP Analysis of the MHC Region Reveals Multiple Loci for Type 1A Diabetes , 2007 .

[28]  Simon C. Potter,et al.  Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls , 2007, Nature.

[29]  S. Snelgrove,et al.  β Cells cannot directly prime diabetogenic CD8 T cells in nonobese diabetic mice , 2007, Proceedings of the National Academy of Sciences.

[30]  K. Mossman The Wellcome Trust Case Control Consortium, U.K. , 2008 .