Shape turnpike for linear parabolic PDE models

Abstract We introduce and study the turnpike property for time-varying shapes, within the viewpoint of optimal control. We focus here on second-order linear parabolic equations where the shape acts as a source term and we seek the optimal time-varying shape that minimizes a quadratic criterion. We first establish existence of optimal solutions under some appropriate sufficient conditions. We then provide necessary conditions for optimality in terms of adjoint equations and, using the concept of strict dissipativity, we prove that state and adjoint satisfy the measure-turnpike property, meaning that the extremal time-varying solution remains essentially close to the optimal solution of an associated static problem. We show that the optimal shape enjoys the exponential turnpike property in terms of Hausdorff distance for a Mayer quadratic cost. We illustrate the turnpike phenomenon in optimal shape design with several numerical simulations.

[1]  A. Zaslavski Turnpike Theory of Continuous-Time Linear Optimal Control Problems , 2015 .

[2]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[3]  L. McKenzie,et al.  TURNPIKE THEOREMS FOR A GENERALIZED LEONTIEF MODELl , 1963 .

[4]  R. Bellman,et al.  Linear Programming and Economic Analysis. , 1960 .

[5]  Karl Worthmann,et al.  An Exponential Turnpike Theorem for Dissipative Discrete Time Optimal Control Problems , 2014, SIAM J. Control. Optim..

[6]  Jiongmin Yong,et al.  Optimal Control Theory for Infinite Dimensional Systems , 1994 .

[7]  Enrique Zuazua,et al.  The turnpike property in finite-dimensional nonlinear optimal control , 2014, 1402.3263.

[8]  Enrique Zuazua,et al.  Long Time versus Steady State Optimal Control , 2013, SIAM J. Control. Optim..

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  Enrique Zuazua,et al.  Remarks on Long Time Versus Steady State Optimal Control , 2016 .

[11]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[12]  H. Groemer On the symmetric difference metric for convex bodies. , 2000 .

[13]  L. Younes,et al.  Shape deformation analysis from the optimal control viewpoint , 2014, 1401.0661.

[14]  L. Evans Measure theory and fine properties of functions , 1992 .

[15]  Enrique Zuazua,et al.  Generation of 2D water waves by moving bottom disturbances , 2012 .

[16]  Lars Grüne,et al.  Turnpike Properties and Strict Dissipativity for Discrete Time Linear Quadratic Optimal Control Problems , 2018, SIAM J. Control. Optim..

[17]  Dominique Bonvin,et al.  On turnpike and dissipativity properties of continuous-time optimal control problems , 2015, Autom..

[18]  Hervé Le Dret Nonlinear Elliptic Partial Differential Equations: An Introduction , 2018 .

[19]  E. Zuazua,et al.  Optimal Shape and Location of Sensors for Parabolic Equations with Random Initial Data , 2014, Archive for Rational Mechanics and Analysis.

[20]  Lars Grüne,et al.  On the relation between strict dissipativity and turnpike properties , 2016, Syst. Control. Lett..

[21]  J. Willems Dissipative dynamical systems part I: General theory , 1972 .

[22]  Can Zhang,et al.  Integral and measure-turnpike properties for infinite-dimensional optimal control systems , 2017, Math. Control. Signals Syst..

[23]  P. S. Bauer Dissipative Dynamical Systems: I. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[24]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[25]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[26]  R. Barros,et al.  Shape optimization of a moving bottom underwater generating solitary waves ruled by a forced KdV equation , 2017 .

[27]  Emmanuel Tr'elat,et al.  Optimal observability of the multi-dimensional wave and Schrödinger equations in quantum ergodic domains , 2012, Journal of the European Mathematical Society.

[28]  Antoine Henrot,et al.  Variation et optimisation de formes , 2005 .

[29]  L. Grüne,et al.  Infinite Horizon Optimal Control , 2011 .

[30]  Lars Grüne,et al.  Exponential sensitivity and turnpike analysis for linear quadratic optimal control of general evolution equations , 2020 .

[31]  C. Sogge Hangzhou lectures on eigenfunctions of the Laplacian , 2014 .

[32]  Can Zhang,et al.  Steady-State and Periodic Exponential Turnpike Property for Optimal Control Problems in Hilbert Spaces , 2016, SIAM J. Control. Optim..

[33]  Grégoire Allaire,et al.  Long Time Behavior of a Two-Phase Optimal Design for the Heat Equation , 2010, SIAM J. Control. Optim..

[34]  Matthew MacDonald,et al.  Shapes and Geometries , 1987 .

[35]  M. Dambrine,et al.  Oriented distance point of view on random sets , 2019, ESAIM: Control, Optimisation and Calculus of Variations.

[36]  J. Bolte,et al.  Characterizations of Lojasiewicz inequalities: Subgradient flows, talweg, convexity , 2009 .

[37]  Marion Kee,et al.  Analysis , 2004, Machine Translation.