Tight Lower and Upper Bounds on the Minimum Distance of LDPC Codes

In this letter, we obtain lower and upper bounds on the minimum distance <inline-formula> <tex-math notation="LaTeX">$d_{\min }$ </tex-math></inline-formula> of low-density parity-check (LDPC) codes. The bounds are derived by categorizing the non-zero code words of an LDPC code into two categories of elementary and non-elementary. The first category contains code words whose induced subgraph has only degree-2 check nodes. We propose an efficient search algorithm that can find the elementary code words of an LDPC code with weight less than a certain value <inline-formula> <tex-math notation="LaTeX">$a_{\max }$ </tex-math></inline-formula>, exhaustively. We also derive a lower bound <inline-formula> <tex-math notation="LaTeX">$L_{ne}$ </tex-math></inline-formula> on the weight of non-elementary code words. By performing the search with <inline-formula> <tex-math notation="LaTeX">$a_{\max } = L_{ne}$ </tex-math></inline-formula>, we either obtain an elementary code word with the smallest weight <inline-formula> <tex-math notation="LaTeX">$d_{\min }$ </tex-math></inline-formula>, or establish the lower bound of <inline-formula> <tex-math notation="LaTeX">$L_{ne}$ </tex-math></inline-formula> on <inline-formula> <tex-math notation="LaTeX">$d_{\min }$ </tex-math></inline-formula>. For the upper bound, we modify our search algorithm to reach elementary codewords of larger weights at the cost of being non-exhaustive. Once such a codeword is found, its weight acts as an upper bound on <inline-formula> <tex-math notation="LaTeX">$d_{\min }$ </tex-math></inline-formula>. We examine a large number of regular and irregular LDPC codes, and demonstrate the efficiency and versatility of our technique in finding lower and upper bounds on, and in many cases the exact value of, <inline-formula> <tex-math notation="LaTeX">$d_{\min }$ </tex-math></inline-formula>. Finding <inline-formula> <tex-math notation="LaTeX">$d_{\min }$ </tex-math></inline-formula>, or establishing search-based lower or upper bounds, for many of the examined codes are out of the reach of any existing algorithm.

[1]  Masakatu Morii,et al.  A probabilistic computation method for the weight distribution of low-density parity-check codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[2]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[3]  Amir H. Banihashemi,et al.  Symmetrical Constructions for Regular Girth-8 QC-LDPC Codes , 2017, IEEE Transactions on Communications.

[4]  Amir H. Banihashemi,et al.  New Characterization and Efficient Exhaustive Search Algorithm for Leafless Elementary Trapping Sets of Variable-Regular LDPC Codes , 2016, IEEE Transactions on Information Theory.

[5]  Ahmet B. Keha,et al.  Minimum distance computation of LDPC codes using a branch and cut algorithm , 2010, IEEE Transactions on Communications.

[6]  Daniel J. Costello,et al.  LDPC block and convolutional codes based on circulant matrices , 2004, IEEE Transactions on Information Theory.

[7]  Amir H. Banihashemi,et al.  Lower Bounds on the Size of Smallest Elementary and Non-Elementary Trapping Sets in Variable-Regular LDPC Codes , 2017, IEEE Communications Letters.

[8]  Amir H. Banihashemi,et al.  On the Tanner Graph Cycle Distribution of Random LDPC, Random Protograph-Based LDPC, and Random Quasi-Cyclic LDPC Code Ensembles , 2017, IEEE Transactions on Information Theory.

[9]  Amir H. Banihashemi,et al.  Characterization and efficient exhaustive search algorithm for elementary trapping sets of irregular LDPC codes , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[10]  Bane V. Vasic,et al.  Combinatorial constructions of low-density parity-check codes for iterative decoding , 2002, IEEE Transactions on Information Theory.

[11]  David Declercq,et al.  Improved impulse method to evaluate the low weight profile of sparse binary linear codes , 2008, 2008 IEEE International Symposium on Information Theory.

[12]  Marcel Ambroze,et al.  Addendum to “An Efficient Algorithm to Find All Small-Size Stopping Sets of Low-Density Parity-Check Matrices” , 2012, IEEE Transactions on Information Theory.