Multi-scale modeling of phase separation in mixed lipid bilayers.

An approach to bridging the phenomenological field theory description of phase separation in binary mixed lipid bilayers with coarse-grained (CG) molecular dynamics (MD) simulation is presented. CG MD simulation is carried out for a 1:1 dipalmitoylphosphatidylcholine/dipalmitoylphosphatidylethanolamine lipid mixture at the liquid-gel phase coexistence condition. The liquid-gel phase separation can be characterized by the bilayer thickness, area per lipid molecule, and orientation parameter of the lipid tails. After a local order parameter is defined using the lipid tail bond orientation parameter, the CG MD data are bridged to a mesoscopic model based on the phenomenological Landau-Ginzberg free-energy functional. All parameters in this mesoscopic model are defined from the information of the phase boundary structure and the distributions of the order parameter in the liquid and gel phases. It is found that the mesoscopic model reproduces the equilibrium properties of the system very well, including collective fluctuations in both phases, spatial correlation functions of the order parameter, and the line tension. The possibility of using a time-dependent Landau-Ginzberg model to mimic the phase-separation dynamics is also investigated, using the relaxation time constant obtained by fitting the time-dependent correlation functions of the order parameter.

[1]  T. Lubensky,et al.  Principles of condensed matter physics , 1995 .

[2]  Berend Smit,et al.  Simulating the self-assembly of model membranes , 1999 .

[3]  E Gratton,et al.  Two photon fluorescence microscopy of coexisting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures. , 2000, Biophysical journal.

[4]  Siewert J. Marrink,et al.  The binary mixing behavior of phospholipids in a bilayer : A molecular dynamics study , 2004 .

[5]  Saxena,et al.  Phase separation and shape deformation of two-phase membranes , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  Sarah L Veatch,et al.  Organization in lipid membranes containing cholesterol. , 2002, Physical review letters.

[7]  Reinhard Lipowsky,et al.  Computer simulations of bilayer membranes - self-assembly and interfacial tension. , 1998 .

[8]  R. D. Groot,et al.  Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants. , 2001, Biophysical journal.

[9]  E. Lindahl,et al.  Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations. , 2000, Biophysical journal.

[10]  Gregory A Voth,et al.  A multiscale coarse-graining method for biomolecular systems. , 2005, The journal of physical chemistry. B.

[11]  A. Mark,et al.  Molecular view of hexagonal phase formation in phospholipid membranes. , 2004, Biophysical journal.

[12]  M. Klein,et al.  Constant-pressure molecular dynamics investigation of cholesterol effects in a dipalmitoylphosphatidylcholine bilayer. , 1998, Biophysical journal.

[13]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[14]  K. Jørgensen,et al.  Nonequilibrium Lipid Domain Growth in the Gel−Fluid Two-Phase Region of a DC16PC−DC22PC Lipid Mixture Investigated by Monte Carlo Computer Simulation, FT-IR, and Fluorescence Spectroscopy , 2000 .

[15]  Eric Jakobsson,et al.  Simulation of the early stages of nano-domain formation in mixed bilayers of sphingomyelin, cholesterol, and dioleylphosphatidylcholine. , 2004, Biophysical journal.

[16]  K. Esselink,et al.  Computer simulations of a water/oil interface in the presence of micelles , 1990, Nature.

[17]  O. G. Mouritsen,et al.  Phase separation dynamics and lateral organization of two-component lipid membranes. , 1995, Biophysical journal.

[18]  Gregory A Voth,et al.  Coupling field theory with mesoscopic dynamical simulations of multicomponent lipid bilayers. , 2004, Biophysical journal.

[19]  M. Rao,et al.  Shape Instabilities in the Dynamics of a Two-component Fluid Membrane , 1997, cond-mat/9704171.

[20]  H L Scott,et al.  Combined Monte Carlo and molecular dynamics simulation of hydrated 18:0 sphingomyelin-cholesterol lipid bilayers. , 2004, The Journal of chemical physics.

[21]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[22]  A. V. Samsonov,et al.  Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes. , 2001, Biophysical journal.

[23]  M S Sansom,et al.  Membrane simulations: bigger and better? , 2000, Current opinion in structural biology.

[24]  E. Michonova-Alexova,et al.  Component and state separation in DMPC/DSPC lipid bilayers: a Monte Carlo simulation study. , 2002, Biophysical journal.

[25]  Robert B. Gennis,et al.  Biomembranes: Molecular Structure and Function , 1988 .

[26]  Taniguchi,et al.  Shape deformation and phase separation dynamics of two-component vesicles. , 1996, Physical review letters.

[27]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[28]  Alan E. Mark,et al.  Effect of Undulations on Surface Tension in Simulated Bilayers , 2001 .

[29]  J M Sturtevant,et al.  Investigation of phase transitions of lipids and lipid mixtures by sensitivity differential scanning calorimetry. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Roland Faller,et al.  Simulation of domain formation in DLPC-DSPC mixed bilayers. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[31]  A. Smondyrev,et al.  Structure of dipalmitoylphosphatidylcholine/cholesterol bilayer at low and high cholesterol concentrations: molecular dynamics simulation. , 1999, Biophysical journal.

[32]  Gerhard Gompper,et al.  Mobility and elasticity of self-assembled membranes. , 1999 .

[33]  D P Tieleman,et al.  A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. , 1997, Biochimica et biophysica acta.

[34]  Ilpo Vattulainen,et al.  Coarse-grained model for phospholipid/cholesterol bilayer. , 2004, The Journal of chemical physics.

[35]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[36]  Reinhard Lipowsky,et al.  The conformation of membranes , 1991, Nature.

[37]  A. Mark,et al.  Coarse grained model for semiquantitative lipid simulations , 2004 .

[38]  Kai Simons,et al.  Model systems, lipid rafts, and cell membranes. , 2004, Annual review of biophysics and biomolecular structure.

[39]  J. Sturtevant,et al.  Investigation of phase transitions of lipids and lipid mixtures by high sensitivity differential scanning calorimetry ( lipid bilayers / membranes / phase diagrams / transition heat capacity curves ) , 2022 .

[40]  Gregory A Voth,et al.  Bridging microscopic and mesoscopic simulations of lipid bilayers. , 2002, Biophysical journal.

[41]  D. Brown,et al.  Functions of lipid rafts in biological membranes. , 1998, Annual review of cell and developmental biology.

[42]  R. C. Reeder,et al.  A Coarse Grain Model for Phospholipid Simulations , 2001 .

[43]  Gregory A Voth,et al.  Coupling field theory with continuum mechanics: a simulation of domain formation in giant unilamellar vesicles. , 2005, Biophysical journal.

[44]  Reinhard Lipowsky,et al.  Equilibrium structure and lateral stress distribution of amphiphilic bilayers from dissipative particle dynamics simulations , 2002 .

[45]  M. Edidin The state of lipid rafts: from model membranes to cells. , 2003, Annual review of biophysics and biomolecular structure.

[46]  M. Caffrey,et al.  A temperature gradient method for lipid phase diagram construction using time-resolved x-ray diffraction. , 1987, Biophysical journal.

[47]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[48]  E Gratton,et al.  Lipid rafts reconstituted in model membranes. , 2001, Biophysical journal.

[49]  S. Feller,et al.  Molecular dynamics simulations of lipid bilayers , 2000 .