Multi-scale Modelling of Computers Made from Excitable Chemical Droplets

Here we review and extend models on different scales for a computing architecture made from networks of excitable chemical droplets. The model system of the Belousov-Zhabotinsky (BZ) reaction enclosed in lipid-coated droplets in oil is used to study signal transmission dynamics of chemical computers and their modelling. The excitable medium oscillates in the sub-excitable, excitable or self-exciting regimes, leading to excitation pulses that spread over the medium and can be used for information processing. We review a homogeneous differential equation model, the spatially extended partial differential equation model and a cellular automaton model of the chemical reaction and propose a new high level modelling approach for the droplets, which uses discrete states and potentially stochastic transition functions to represent the complex chemical state of each droplet. We show how the parameters like oscillation periods, diffusion coefficients and wave propagation speed for the models can be deduced from the lower level models and from experimental data. Furthermore we offer an outlook on the currently ongoing work and the role of the different modelling and simulation scopes within.

[1]  Peter Dittrich,et al.  Symbol Representations in Evolving Droplet Computers , 2012, UCNC.

[2]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[3]  K. Yoshikawa,et al.  Chemical Diode , 1996 .

[4]  Michael Menzinger,et al.  Stirring Effects and Phase-Dependent Inhomogeneity in Chemical Oscillations: The Belousov-Zhabotinsky Reaction in a CSTR , 1997 .

[5]  R. M. Noyes,et al.  Oscillations in chemical systems. II. Thorough analysis of temporal oscillation in the bromate-cerium-malonic acid system , 1972 .

[6]  Kenichi Yoshikawa,et al.  On Chemical Reactors That Can Count , 2003 .

[7]  L. Kuhnert,et al.  A new optical photochemical memory device in a light-sensitive chemical active medium , 1986, Nature.

[8]  医療政策委員会 Concentration wave propagation in two-dimensional liquid-phase self-oscillating system , 1970 .

[9]  Kenneth Showalter,et al.  Logic gates in excitable media , 1995 .

[10]  R. L. Pitliya,et al.  Oscillations in Chemical Systems , 1986 .

[11]  M. Januszewski,et al.  Accelerating numerical solution of stochastic differential equations with CUDA , 2009, Comput. Phys. Commun..

[12]  J. Keener,et al.  Spiral waves in the Belousov-Zhabotinskii reaction , 1986 .

[13]  S. V. Aksenov,et al.  A spatially extended stochastic model of the bacterial chemotaxis signalling pathway. , 2003, Journal of molecular biology.

[14]  Stefan C. Müller,et al.  Radius-Dependent Inhibition and Activation of Chemical Oscillations in Small Droplets , 1998 .

[15]  I. Prigogine,et al.  Symmetry Breaking Instabilities in Dissipative Systems. II , 1968 .

[16]  George S. Fishman,et al.  Discrete-Event Simulation : Modeling, Programming, and Analysis , 2001 .

[17]  A. Zhabotinsky,et al.  Autowave processes in a distributed chemical system. , 1973, Journal of theoretical biology.

[18]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[19]  S. Wolfram Statistical mechanics of cellular automata , 1983 .

[20]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[21]  William L. Hwang,et al.  Droplet networks with incorporated protein diodes show collective properties. , 2009, Nature nanotechnology.

[22]  Jan Szymanski,et al.  Realistic parameters for simple models of the Belousov-Zhabotinsky reaction. , 2011, The journal of physical chemistry. A.

[23]  Andrew Adamatzky,et al.  Logical and arithmetic circuits in Belousov-Zhabotinsky encapsulated disks. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Marc-Thorsten Hütt,et al.  Stochastic resonance in discrete excitable dynamics on graphs , 2012 .

[25]  Andrew Adamatzky,et al.  Collision-Based Computing , 2002, Springer London.

[26]  Klaus-Peter Zauner,et al.  Molecular Information Technology , 2005 .

[27]  Kenneth Showalter,et al.  Chemical Wave Logic Gates , 1996 .

[28]  D. Barkley A model for fast computer simulation of waves in excitable media , 1991 .

[29]  Jerzy Gorecki,et al.  Computing in Geometrical Constrained Excitable Chemical Systems , 2009, Encyclopedia of Complexity and Systems Science.

[30]  K. Yoshikawa,et al.  Real-time memory on an excitable field. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Hywel Morgan,et al.  Formation of artificial lipid bilayers using droplet dielectrophoresis. , 2008, Lab on a chip.

[32]  S. Hastings,et al.  Spatial Patterns for Discrete Models of Diffusion in Excitable Media , 1978 .

[33]  Andrew Adamatzky,et al.  Experimental logical gates in a reaction-diffusion medium: the XOR gate and beyond. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  J. Tyson,et al.  A cellular automation model of excitable media including curvature and dispersion. , 1990, Science.

[35]  Andrew Adamatzky,et al.  Computational modalities of Belousov-Zhabotinsky encapsulated vesicles , 2010, Nano Commun. Networks.

[36]  Jan Szymanski,et al.  A simple model of interactions between Belousov-Zhabotinsky droplets , 2012 .

[37]  Andrew Adamatzky,et al.  On Polymorphic Logical Gates in Subexcitable Chemical Medium , 2010, Int. J. Bifurc. Chaos.

[38]  K. Yoshikawa,et al.  Information operations with an excitable field. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[39]  Jan Szymanski,et al.  Droplets with Information Processing Ability , 2011, Int. J. Unconv. Comput..

[40]  A. Winfree Spiral Waves of Chemical Activity , 1972, Science.

[41]  J. Schwartz,et al.  Theory of Self-Reproducing Automata , 1967 .

[42]  Wolfgang Banzhaf,et al.  Artificial ChemistriesA Review , 2001, Artificial Life.

[43]  Andrew Adamatzky,et al.  Collision-based computing in Belousov–Zhabotinsky medium , 2004 .

[44]  Richard M. Noyes,et al.  Oscillations in chemical systems. I. Detailed mechanism in a system showing temporal oscillations , 1972 .

[45]  Andrew Adamatzky,et al.  Computing in nonlinear media and automata collectives , 2001 .

[46]  Andrew Adamatzky,et al.  Towards Arithmetic Circuits in Sub‐Excitable Chemical Media , 2011 .

[47]  Tamás Turányi,et al.  Mechanistic details of the oscillatory Belousov-Zhabotinskii reaction , 1990 .