Complete genome sequence of Salmonella enterica serovar Typhimurium LT2

Salmonella enterica subspecies I, serovar Typhimurium (S. typhimurium), is a leading cause of human gastroenteritis, and is used as a mouse model of human typhoid fever. The incidence of non-typhoid salmonellosis is increasing worldwide, causing millions of infections and many deaths in the human population each year. Here we sequenced the 4,857-kilobase (kb) chromosome and 94-kb virulence plasmid of S. typhimurium strain LT2. The distribution of close homologues of S. typhimurium LT2 genes in eight related enterobacteria was determined using previously completed genomes of three related bacteria, sample sequencing of both S. enterica serovar Paratyphi A (S. paratyphi A) and Klebsiella pneumoniae, and hybridization of three unsequenced genomes to a microarray of S. typhimurium LT2 genes. Lateral transfer of genes is frequent, with 11% of the S. typhimurium LT2 genes missing from S. enterica serovar Typhi (S. typhi), and 29% missing from Escherichia coli K12. The 352 gene homologues of S. typhimurium LT2 confined to subspecies I of S. enterica—containing most mammalian and bird pathogens—are useful for studies of epidemiology, host specificity and pathogenesis. Most of these homologues were previously unknown, and 50 may be exported to the periplasm or outer membrane, rendering them accessible as therapeutic or vaccine targets.

[1]  M. Blaser,et al.  A review of human salmonellosis: III. Magnitude of Salmonella infection in the United States. , 1988, Reviews of infectious diseases.

[2]  E. Todd Epidemiology of foodborne illness: North America , 1990, The Lancet.

[3]  E. Cooke Epidemiology of foodborne illness: UK , 1990, The Lancet.

[4]  W. Boos,et al.  The malX malY operon of Escherichia coli encodes a novel enzyme II of the phosphotransferase system recognizing glucose and maltose and an enzyme abolishing the endogenous induction of the maltose system , 1991, Journal of bacteriology.

[5]  K. Sanderson,et al.  The XbaI-BlnI-CeuI genomic cleavage map of Salmonella typhimurium LT2 determined by double digestion, end labelling, and pulsed-field gel electrophoresis , 1993, Journal of bacteriology.

[6]  Sita D Gupta,et al.  Identification of cutC and cutF (nlpE) genes involved in copper tolerance in Escherichia coli , 1995, Journal of bacteriology.

[7]  K. Sanderson,et al.  Highly plastic chromosomal organization in Salmonella typhi. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[8]  P. Reeves,et al.  Gene transfer is a major factor in bacterial evolution. , 1996, Molecular biology and evolution.

[9]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[10]  Eduardo A. Groisman,et al.  The SPI-3 Pathogenicity Island ofSalmonella enterica , 1999, Journal of bacteriology.

[11]  K. Nakai,et al.  PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. , 1999, Trends in biochemical sciences.

[12]  W. Boos,et al.  The role of the trehalose system in regulating the maltose regulon of Escherichia coli , 1999, Molecular microbiology.

[13]  B. Ahmer,et al.  The Virulence Plasmid of Salmonella typhimurium Is Self-Transmissible , 1999, Journal of bacteriology.

[14]  J. Slauch,et al.  Tissue-Specific Gene Expression Identifies a Gene in the Lysogenic Phage Gifsy-1 That Affects Salmonella enterica Serovar Typhimurium Survival in Peyer's Patches , 2000, Journal of bacteriology.

[15]  J. Venter,et al.  Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. , 2000, Science.

[16]  W Miller,et al.  Comparison of the Escherichia coli K-12 genome with sampled genomes of a Klebsiella pneumoniae and three salmonella enterica serovars, Typhimurium, Typhi and Paratyphi. , 2000, Nucleic acids research.

[17]  J. Bockemühl,et al.  Supplement 1999 (no. 43) to the Kauffmann-White scheme. , 2000, Research in microbiology.

[18]  T. Meyer,et al.  Recombinant live Salmonella spp. for human vaccination against heterologous pathogens. , 2000, FEMS immunology and medical microbiology.

[19]  H. Ochman,et al.  Lateral gene transfer and the nature of bacterial innovation , 2000, Nature.

[20]  S Schwartz,et al.  Web-based visualization tools for bacterial genome alignments. , 2000, Nucleic acids research.

[21]  G. Dougan,et al.  Salmonella enterica Serovar Typhi Possesses a Unique Repertoire of Fimbrial Gene Sequences , 2001, Infection and Immunity.

[22]  R. Schaaper,et al.  Corrigendum to “The ΔuvrB mutations in the Ames strains of Salmonella span 15 to 119 genes” , 2001 .

[23]  Kim Rutherford,et al.  Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18 , 2001, Nature.

[24]  R. Schaaper,et al.  The ΔuvrB mutations in the Ames strains of Salmonella span 15 to 119 genes , 2001 .

[25]  N. W. Davis,et al.  Genome sequence of enterohaemorrhagic Escherichia coli O157:H7 , 2001, Nature.

[26]  P. Gulig,et al.  Virulence Plasmid-Borne spvB and spvC Genes Can Replace the 90-Kilobase Plasmid in Conferring Virulence to Salmonella enterica Serovar Typhimurium in Subcutaneously Inoculated Mice , 2001, Journal of Bacteriology.

[27]  Michael Y. Galperin,et al.  The COG database: new developments in phylogenetic classification of proteins from complete genomes , 2001, Nucleic Acids Res..

[28]  L. Bossi,et al.  Variable assortment of prophages provides a transferable repertoire of pathogenic determinants in Salmonella , 2001, Molecular microbiology.

[29]  J. Pawelek,et al.  Tumor-Targeted Salmonella , 2002 .