Compositional Varied Core-Shell InGaP Nanowires Grown by Metal-Organic Chemical Vapor Deposition.

In this study, we report the growth of core-shell InGaP nanowires with compositional varied cores/shells using metal-organic chemical vapor deposition. These core-shell InGaP nanowires exhibit Ga-enriched cores attributed to the strong affinity between Au and In, and In-enriched shells due to In-rich vapor ambient. Detailed electron microscopy investigations indicate that the In and Ga concentrations in the nanowire cores and shells varied along the growth direction of InGaP nanowires. It is found that the strain relaxation through Ga diffusion outward and In diffusion inward leads to the decrease of compositional difference between the nanowire core and shell from top to bottom. This study offers a possibility to grow structural complex ternary nanowires that can be used for future applications.

[1]  H. Tan,et al.  Polarity-driven nonuniform composition in InGaAs nanowires. , 2013, Nano letters.

[2]  L. Samuelson,et al.  Infrared photodetectors in heterostructure nanowires. , 2006, Nano letters.

[3]  K. Dick,et al.  Optimization of Au-assisted InAs nanowires grown by MOVPE , 2006 .

[4]  H. Tan,et al.  Formation of hierarchical InAs nanoring/GaAs nanowire heterostructures. , 2009, Angewandte Chemie.

[5]  Jerry Tersoff,et al.  Interface dynamics and crystal phase switching in GaAs nanowires , 2016, Nature.

[6]  Takashi Fukui,et al.  Single GaAs/GaAsP coaxial core-shell nanowire lasers. , 2009, Nano letters.

[7]  W. Lu,et al.  Phase separation induced by Au catalysts in ternary InGaAs nanowires. , 2013, Nano letters.

[8]  R. LaPierre,et al.  Dependence of InGaP nanowire morphology and structure on molecular beam epitaxy growth conditions , 2010, Nanotechnology.

[9]  Xiaoguang Yang,et al.  Selective-Area MOCVD Growth and Carrier-Transport-Type Control of InAs(Sb)/GaSb Core-Shell Nanowires. , 2016, Nano letters.

[10]  H. Tan,et al.  Nature of heterointerfaces in GaAs/InAs and InAs/GaAs axial nanowire heterostructures , 2008 .

[11]  J. Wallentin,et al.  Particle-assisted Ga(x)In(1-x)P nanowire growth for designed bandgap structures. , 2012, Nanotechnology.

[12]  Xuezhe Yu,et al.  Near Full-Composition-Range High-Quality GaAs1-xSbx Nanowires Grown by Molecular-Beam Epitaxy. , 2017, Nano letters.

[13]  W. Lu,et al.  Quality Control of GaAs Nanowire Structures by Limiting As Flux in Molecular Beam Epitaxy , 2015 .

[14]  W. Lu,et al.  Self-Assembly Growth of In-Rich InGaAs Core-Shell Structured Nanowires with Remarkable Near-Infrared Photoresponsivity. , 2017, Nano letters.

[15]  Chennupati Jagadish,et al.  Influence of nanowire density on the shape and optical properties of ternary InGaAs nanowires. , 2006, Nano letters.

[16]  Kenji Hiruma,et al.  GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si. , 2010, Nano letters.

[17]  A. Onton,et al.  Electronic Structure and Luminescence Processes in In1−xGaxP Alloys , 1971 .

[18]  H. Tan,et al.  III–V semiconductor nanowires for optoelectronic device applications , 2011, 2013 International Conference on Microwave and Photonics (ICMAP).

[19]  H. Tan,et al.  Growth mechanism of truncated triangular III-V nanowires. , 2007, Small.

[20]  W. Lu,et al.  Distinct photocurrent response of individual GaAs nanowires induced by n-type doping. , 2012, ACS nano.

[21]  Lucas Schweickert,et al.  Spontaneous alloy composition ordering in GaAs-AlGaAs core-shell nanowires. , 2013, Nano letters.

[22]  R. LaPierre,et al.  Analytical description of the metal-assisted growth of III–V nanowires: Axial and radial growths , 2009 .

[23]  Changhong Wang,et al.  3D Atomic‐Scale Insights into Anisotropic Core–Shell‐Structured InGaAs Nanowires Grown by Metal–Organic Chemical Vapor Deposition , 2017, Advanced materials.

[24]  Chennupati Jagadish,et al.  Twin-free uniform epitaxial GaAs nanowires grown by a two-temperature process. , 2007, Nano letters.

[25]  H. Tan,et al.  InxGa1−xAs nanowires with uniform composition, pure wurtzite crystal phase and taper-free morphology , 2015, Nanotechnology.

[26]  Gerald B. Stringfellow,et al.  Mass spectrometric studies of phosphine pyrolysis and OMVPE growth of InP , 1987 .

[27]  H. Tan,et al.  Unequal P distribution in nanowires and the planar layer during GaAsP growth on GaAs {111}B by metal-organic chemical vapor deposition , 2013 .

[28]  L. Samuelson,et al.  Monolithic GaAs/InGaP nanowire light emitting diodes on silicon , 2008, Nanotechnology.

[29]  Ning Wang,et al.  Growth of nanowires , 2008 .

[30]  C. Ning,et al.  Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions , 2017 .