Divergent trajectory of replication and intrinsic pathogenicity of SARS-CoV-2 Omicron post-BA.2/5 subvariants in the upper and lower respiratory tract

[1]  P. Garg,et al.  Omicron sub-lineage BA.5 infection results in attenuated pathology in hACE2 transgenic mice , 2023, Communications biology.

[2]  D. Fremont,et al.  Characterization of the SARS-CoV-2 BA.5.5 and BQ.1.1 Omicron variants in mice and hamsters , 2023, Journal of Virology.

[3]  K. To,et al.  The viral fitness and intrinsic pathogenicity of dominant SARS-CoV-2 Omicron sublineages BA.1, BA.2, and BA.5 , 2023, EBioMedicine.

[4]  M. Beer,et al.  Omicron subvariant BA.5 efficiently infects lung cells , 2023, Nature communications.

[5]  Y. Nasuhara,et al.  Associations of COVID-19 symptoms with omicron subvariants BA.2 and BA.5, host status, and clinical outcomes in Japan: a registry-based observational study , 2023, Lancet. Infectious Diseases (Print).

[6]  J. Zahradník,et al.  Virological characteristics of the SARS-CoV-2 XBB variant derived from recombination of two Omicron subvariants , 2023, Nature communications.

[7]  Xuping Xie,et al.  Mutations in SARS-CoV-2 variant nsp6 enhance type-I interferon antagonism , 2023, Emerging microbes & infections.

[8]  J. Doudna,et al.  Rapid assembly of SARS-CoV-2 genomes reveals attenuation of the Omicron BA.1 variant through NSP6 , 2023, Nature communications.

[9]  Gang Li,et al.  Human airway and nasal organoids reveal escalating replicative fitness of SARS-CoV-2 emerging variants , 2023, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Baoshan Zhang,et al.  Enhanced evasion of neutralizing antibody response by Omicron XBB.1.5, CH.1.1, and CA.3.1 variants , 2023, Cell reports.

[11]  R. Bruton,et al.  Immunological imprinting of humoral immunity to SARS-CoV-2 in children , 2023, bioRxiv.

[12]  Jian-Piao Cai,et al.  COVID-19 mRNA vaccine protects against SARS-CoV-2 Omicron BA.1 infection in diet-induced obese mice through boosting host innate antiviral responses , 2023, eBioMedicine.

[13]  Marc C. Johnson,et al.  Convergent Evolution in SARS-CoV-2 Spike Creates a Variant Soup from Which New COVID-19 Waves Emerge , 2023, International journal of molecular sciences.

[14]  A. Ensser,et al.  Spike and nsp6 are key determinants of SARS-CoV-2 Omicron BA.1 attenuation , 2023, Nature.

[15]  Xuping Xie,et al.  Low neutralization of SARS-CoV-2 Omicron BA.2.75.2, BQ.1.1 and XBB.1 by parental mRNA vaccine or a BA.5 bivalent booster , 2022, Nature Medicine.

[16]  J. Zahradník,et al.  Convergent evolution of SARS-CoV-2 Omicron subvariants leading to the emergence of BQ.1.1 variant , 2022, bioRxiv.

[17]  A. Gordon,et al.  Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants , 2022, Cell.

[18]  C. Davis,et al.  Cross-neutralization and viral fitness of SARS-CoV-2 Omicron sublineages , 2022, bioRxiv.

[19]  R. Webby,et al.  Characterization of SARS-CoV-2 Omicron BA.4 and BA.5 isolates in rodents , 2022, Nature.

[20]  G. Lozanski,et al.  Enhanced neutralization resistance of SARS-CoV-2 Omicron subvariants BQ.1, BQ.1.1, BA.4.6, BF.7, and BA.2.75.2 , 2022, Cell Host & Microbe.

[21]  K. Rosenke,et al.  SARS-CoV-2 Omicron BA.1 and BA.2 are attenuated in rhesus macaques as compared to Delta , 2022, Science advances.

[22]  Fei Shao,et al.  Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution , 2022, bioRxiv.

[23]  A. Presanis,et al.  Hospitalisation and mortality risk of SARS-COV-2 variant omicron sub-lineage BA.2 compared to BA.1 in England , 2022, Nature Communications.

[24]  Paa Kobina Forson,et al.  An international observational study to assess the impact of the Omicron variant emergence on the clinical epidemiology of COVID-19 in hospitalised patients , 2022, eLife.

[25]  J. Bhiman,et al.  Clinical severity of SARS-CoV-2 Omicron BA.4 and BA.5 lineages compared to BA.1 and Delta in South Africa , 2022, Nature Communications.

[26]  J. Zahradník,et al.  Virological characteristics of the SARS-CoV-2 Omicron BA.2.75 variant , 2022, Cell Host & Microbe.

[27]  H. Hamana,et al.  Dissecting Naturally Arising Amino Acid Substitutions at Position L452 of SARS-CoV-2 Spike , 2022, Journal of virology.

[28]  H. Ullum,et al.  Risk of reinfection, vaccine protection, and severity of infection with the BA.5 omicron subvariant: a nation-wide population-based study in Denmark , 2022, The Lancet Infectious Diseases.

[29]  J. Zahradník,et al.  Virological characteristics of the SARS-CoV-2 Omicron BA.2 subvariants, including BA.4 and BA.5 , 2022, Cell.

[30]  J. Chan,et al.  Spike mutations contributing to the altered entry preference of SARS-CoV-2 omicron BA.1 and BA.2 , 2022, Emerging microbes & infections.

[31]  G. Whittaker,et al.  The Omicron Variant BA.1.1 Presents a Lower Pathogenicity than B.1 D614G and Delta Variants in a Feline Model of SARS-CoV-2 Infection , 2022, Journal of virology.

[32]  Wei Wang,et al.  Characterization of Entry Pathways, Species-Specific Angiotensin-Converting Enzyme 2 Residues Determining Entry, and Antibody Neutralization Evasion of Omicron BA.1, BA.1.1, BA.2, and BA.3 Variants , 2022, Journal of virology.

[33]  Jian-Piao Cai,et al.  Coronaviruses exploit a host cysteine-aspartic protease for replication , 2022, Nature.

[34]  Jian-Piao Cai,et al.  Virological features and pathogenicity of SARS-CoV-2 Omicron BA.2 , 2022, Cell Reports Medicine.

[35]  M. Churchill,et al.  SARS-CoV-2 Omicron BA.5: Evolving tropism and evasion of potent humoral responses and resistance to clinical immunotherapeutics relative to viral variants of concern , 2022, eBioMedicine.

[36]  William T. Harvey,et al.  SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway , 2022, Nature Microbiology.

[37]  Qian Wang,et al.  Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5 , 2022, Nature.

[38]  O. Pybus,et al.  Emergence of SARS-CoV-2 Omicron lineages BA.4 and BA.5 in South Africa , 2022, Nature Medicine.

[39]  K. To,et al.  Pathogenicity, transmissibility, and fitness of SARS-CoV-2 Omicron in Syrian hamsters , 2022, Science.

[40]  W. Baumgärtner,et al.  SARS-CoV-2 Omicron variant causes mild pathology in the upper and lower respiratory tract of hamsters , 2022, Nature Communications.

[41]  Fei Shao,et al.  BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection , 2022, Nature.

[42]  M. Lipsitch,et al.  Clinical outcomes associated with SARS-CoV-2 Omicron (B.1.1.529) variant and BA.1/BA.1.1 or BA.2 subvariant infection in Southern California , 2022, Nature Medicine.

[43]  M. Diamond,et al.  Characterization and antiviral susceptibility of SARS-CoV-2 Omicron BA.2 , 2022, Nature.

[44]  L. Giaquinto,et al.  The role of NSP6 in the biogenesis of the SARS-CoV-2 replication organelle , 2022, Nature.

[45]  K. Ishii,et al.  Virological characteristics of the SARS-CoV-2 Omicron BA.2 spike , 2022, Cell.

[46]  M. Beer,et al.  The spike gene is a major determinant for the SARS-CoV-2 Omicron-BA.1 phenotype , 2022, bioRxiv.

[47]  D. Patil,et al.  Pathogenicity of SARS-CoV-2 Omicron (R346K) variant in Syrian hamsters and its cross-neutralization with different variants of concern , 2022, eBioMedicine.

[48]  Kristen Fortney,et al.  Eicosanoid signalling blockade protects middle-aged mice from severe COVID-19 , 2022, Nature.

[49]  S. Bhatt,et al.  Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B.1.1.529) and delta (B.1.617.2) variants in England: a cohort study , 2022, The Lancet.

[50]  K. Khunti,et al.  Risk of covid-19 related deaths for SARS-CoV-2 omicron (B.1.1.529) compared with delta (B.1.617.2): retrospective cohort study , 2022, BMJ.

[51]  Liyuan Liu,et al.  Antibody evasion properties of SARS-CoV-2 Omicron sublineages , 2022, Nature.

[52]  B. Luan,et al.  Spike protein-independent attenuation of SARS-CoV-2 Omicron variant in laboratory mice , 2022, bioRxiv.

[53]  A. Kaneda,et al.  Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant , 2022, Nature.

[54]  Frances E. Muldoon,et al.  Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity , 2022, Nature.

[55]  Larissa B. Thackray,et al.  SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters , 2022, Nature.

[56]  K. To,et al.  Attenuated replication and pathogenicity of SARS-CoV-2 B.1.1.529 Omicron , 2022, Nature.

[57]  K. To,et al.  Age-associated SARS-CoV-2 breakthrough infection and changes in immune response in a mouse model , 2022, Emerging microbes & infections.

[58]  Y. Kawaoka,et al.  Reduced pathogenicity of the SARS-CoV-2 omicron variant in hamsters , 2022, bioRxiv.

[59]  Jordan J. Clark,et al.  Activity of convalescent and vaccine serum against SARS-CoV-2 Omicron , 2021, Nature.

[60]  T. Ndung’u,et al.  Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization , 2021, Nature.

[61]  Fei Shao,et al.  Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies , 2021, bioRxiv.

[62]  J. Bhiman,et al.  Early assessment of the clinical severity of the SARS-CoV-2 Omicron variant in South Africa , 2021, medRxiv.

[63]  Liyuan Liu,et al.  Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2 , 2021, Nature.

[64]  K. To,et al.  Emerging SARS-CoV-2 variants expand species tropism to murines , 2021, EBioMedicine.

[65]  M. H. Fernandes,et al.  Age-Related Susceptibility of Ferrets to SARS-CoV-2 Infection , 2021, bioRxiv.

[66]  T. Stadler,et al.  CoV-Spectrum: analysis of globally shared SARS-CoV-2 data to identify and characterize new variants , 2021, Bioinform..

[67]  J. Zahradník,et al.  SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity , 2021, Cell Host & Microbe.

[68]  Jian-Piao Cai,et al.  Targeting highly pathogenic coronavirus-induced apoptosis reduces viral pathogenesis and disease severity , 2021, Science Advances.

[69]  Eun Ji Kim,et al.  Age-dependent pathogenic characteristics of SARS-CoV-2 infection in ferrets , 2021, Nature Communications.

[70]  Lisa E. Gralinski,et al.  A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures , 2020, Nature.

[71]  Dong Yang,et al.  Host and viral determinants for efficient SARS-CoV-2 infection of the human lung , 2020, Nature Communications.