Expressive Power and Complexity in Algebraic Logic

Two complexity problems in algebraic logic are surveyed: the satisfaction problem and the network satisfaction problem. Various complexity results are collected here and some new ones are derived. Many examples are given. The network satisfaction problem for most cylindric algebras of dimension four or more is shown to be intractable. Complexity is tied-in with the expressivity of a relation algebra. Expressivity and complexity are analysed in the context of homogeneous representations. The model-theoretic notion of interpretation is used to generalise known complexity results to a range of other algebraic logics. In particular a number of relation algebras are shown to have intractable network satisfaction problems.

[1]  Henry A. Kautz,et al.  Constraint Propagation Algorithms for Temporal Reasoning , 1986, AAAI.

[2]  Peter B. Ladkin,et al.  On binary constraint problems , 1994, JACM.

[3]  Ian M. Hodkinson,et al.  Step by step – Building representations in algebraic logic , 1997, Journal of Symbolic Logic.

[4]  Johannes A. G. M. Koomen Localizing Temporal Constraint Propagation , 1989, KR.

[5]  Carl A. Gunter,et al.  In handbook of theoretical computer science , 1990 .

[6]  Alexander Reinefeld,et al.  A Symbolic Approach to Interval Constraint Problems , 1992, AISMC.

[7]  R. N. Pelavin A formal approach to planning with concurrent actions and external events , 1988 .

[8]  M. Stone The theory of representations for Boolean algebras , 1936 .

[9]  Drew McDermott,et al.  Temporal Data Base Management , 1987, Artif. Intell..

[10]  Ian M. Hodkinson,et al.  Complete representations in algebraic logic , 1997, Journal of Symbolic Logic.

[11]  Hajnal Andréka,et al.  Decision problems for equational theories of relation algebras , 1997, Memoirs of the American Mathematical Society.

[12]  Ivo Düntsch Small integral relation algebras generated by a partial order , 1991 .

[13]  James F. Allen,et al.  Planning Using a Temporal World Model , 1983, IJCAI.

[14]  Robin Hirsch,et al.  From points to intervals , 1994, J. Appl. Non Class. Logics.

[15]  Rina Dechter,et al.  Temporal Constraint Networks , 1989, Artif. Intell..

[16]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[17]  Gérard Ligozat,et al.  Tractable relations in temporal reasoning: pre-convex relations , 1994 .

[18]  Patrick J. Hayes,et al.  Moments and points in an interval‐based temporal logic , 1989, Comput. Intell..

[19]  Bernhard Nebel,et al.  Reasoning about temporal relations: a maximal tractable subclass of Allen's interval algebra , 1994, JACM.

[20]  Henry A. Kautz,et al.  Integrating Metric and Qualitative Temporal Reasoning , 1991, AAAI.

[21]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[22]  A. Tarski,et al.  A Formalization Of Set Theory Without Variables , 1987 .

[23]  James F. Allen An Interval-Based Representation of Temporal Knowledge , 1981, IJCAI.

[24]  Peter B. Ladkin,et al.  On binary constraint networks , 1989 .

[25]  Robin Hirsch,et al.  Relation Algebras of Intervals , 1996, Artif. Intell..

[26]  Algebraic logic , 1985, Problem books in mathematics.

[27]  P. Boas Machine models and simulations , 1991 .

[28]  Roger D. Maddux,et al.  Representations for Small Relation Algebras , 1994, Notre Dame J. Formal Log..

[29]  Roger D. Maddux,et al.  The origin of relation algebras in the development and axiomatization of the calculus of relations , 1991, Stud Logica.

[30]  James F. Allen Towards a General Theory of Action and Time , 1984, Artif. Intell..

[31]  D. Monk On representable relation algebras. , 1964 .

[32]  Henry A. Kautz,et al.  Constraint propagation algorithms for temporal reasoning: a revised report , 1989 .

[33]  A. Tarski,et al.  Cylindric Algebras. Part II , 1988 .

[34]  J. P. Andersen The Representation of Relation Algebras , 1961 .

[35]  C. J. Everett,et al.  The Representation of Relational Algebras. , 1951 .