Constant-Rank Codes and Their Connection to Constant-Dimension Codes

Constant-dimension codes have recently received attention due to their significance to error control in noncoherent random linear network coding. What the maximal cardinality of any constant-dimension code with finite dimension and minimum distance is and how to construct the optimal constant-dimension code (or codes) that achieves the maximal cardinality both remain open research problems. In this paper, we introduce a new approach to solving these two problems. We first establish a connection between constant-rank codes and constant-dimension codes. Via this connection, we show that optimal constant-dimension codes correspond to optimal constant-rank codes over matrices with sufficiently many rows. As such, the two aforementioned problems are equivalent to determining the maximum cardinality of constant-rank codes and to constructing optimal constant-rank codes, respectively. To this end, we then derive bounds on the maximum cardinality of a constant-rank code with a given minimum rank distance, propose explicit constructions of optimal or asymptotically optimal constant-rank codes, and establish asymptotic bounds on the maximum rate of a constant-rank code.

[1]  G. Styan,et al.  Equalities and Inequalities for Ranks of Matrices , 1974 .

[2]  Sascha Kurz,et al.  Construction of Large Constant Dimension Codes with a Prescribed Minimum Distance , 2008, MMICS.

[3]  Rudolf Ahlswede,et al.  On Perfect Codes and Related Concepts , 2001, Des. Codes Cryptogr..

[4]  Peter Frankl,et al.  The Erdös-Ko-Rado theorem for vector spaces , 1986, J. Comb. Theory, Ser. A.

[5]  Alexander Vardy,et al.  Error-correcting codes in projective space , 2008, 2008 IEEE International Symposium on Information Theory.

[6]  Maximilien Gadouleau,et al.  GENp1-1: Properties of Codes with the Rank Metric , 2006, IEEE Globecom 2006.

[7]  K. K. Chi,et al.  Analysis of network error correction based on network coding , 2005 .

[8]  K. Jain,et al.  Practical Network Coding , 2003 .

[9]  Selmer M. Johnson A new upper bound for error-correcting codes , 1962, IRE Trans. Inf. Theory.

[10]  Reihaneh Safavi-Naini,et al.  Linear authentication codes: bounds and constructions , 2001, IEEE Trans. Inf. Theory.

[11]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[12]  Frank R. Kschischang,et al.  On Metrics for Error Correction in Network Coding , 2008, IEEE Transactions on Information Theory.

[13]  R. Koetter,et al.  The benefits of coding over routing in a randomized setting , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[14]  Frank R. Kschischang,et al.  A Rank-Metric Approach to Error Control in Random Network Coding , 2007, IEEE Transactions on Information Theory.

[15]  Maximilien Gadouleau,et al.  Packing and Covering Properties of Rank Metric Codes , 2007, IEEE Transactions on Information Theory.

[16]  Maximilien Gadouleau,et al.  MacWilliams Identity for Codes with the Rank Metric , 2007, EURASIP J. Wirel. Commun. Netw..

[17]  Tracey Ho,et al.  Resilient network coding in the presence of Byzantine adversaries , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[18]  Maximilien Gadouleau,et al.  On the Decoder Error Probability of Bounded Rank-Distance Decoders for Maximum RankDistance Codes , 2006, IEEE Transactions on Information Theory.

[19]  Emil Grosswald,et al.  The Theory of Partitions , 1984 .

[20]  Martin Bossert,et al.  Codes for network coding , 2008, 2008 IEEE International Symposium on Information Theory.

[21]  Philippe Delsarte,et al.  Bilinear Forms over a Finite Field, with Applications to Coding Theory , 1978, J. Comb. Theory A.

[22]  Tracey Ho,et al.  A Random Linear Network Coding Approach to Multicast , 2006, IEEE Transactions on Information Theory.

[23]  Maximilien Gadouleau,et al.  Construction and covering properties of constant-dimension codes , 2009, 2009 IEEE International Symposium on Information Theory.

[24]  Ernst M. Gabidulin,et al.  Ideals over a Non-Commutative Ring and thier Applications in Cryptology , 1991, EUROCRYPT.

[25]  Maximilien Gadouleau,et al.  Bounds on covering codes with the rank metric , 2008, IEEE Communications Letters.

[26]  Vitaly Skachek,et al.  Recursive Code Construction for Random Networks , 2008, IEEE Transactions on Information Theory.

[27]  Martin Bossert,et al.  Maximum rank distance codes as space-time codes , 2003, IEEE Trans. Inf. Theory.

[28]  R. Yeung,et al.  NETWORK ERROR CORRECTION , PART I : BASIC CONCEPTS AND UPPER BOUNDS , 2006 .

[29]  Ernst M. Gabidulin,et al.  The new construction of rank codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[30]  R. Yeung,et al.  NETWORK ERROR CORRECTION, PART II: LOWER BOUNDS , 2006 .

[31]  Tuvi Etzion Perfect Byte-Correcting Codes , 1998, IEEE Trans. Inf. Theory.

[32]  Baochun Li,et al.  How Practical is Network Coding? , 2006, 200614th IEEE International Workshop on Quality of Service.

[33]  Ning Cai,et al.  Network Error Correction, II: Lower Bounds , 2006, Commun. Inf. Syst..

[34]  Ning Cai,et al.  Network Error Correction, I: Basic Concepts and Upper Bounds , 2006, Commun. Inf. Syst..

[35]  Philippe Delsarte,et al.  Association Schemes and t-Designs in Regular Semilattices , 1976, J. Comb. Theory A.

[36]  Moshe Schwartz,et al.  Codes and Anticodes in the Grassman Graph , 2002, J. Comb. Theory, Ser. A.

[37]  Ron M. Roth,et al.  Author's Reply to Comments on 'Maximum-rank array codes and their application to crisscross error correction' , 1991, IEEE Trans. Inf. Theory.

[38]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[39]  Frank R. Kschischang,et al.  Coding for Errors and Erasures in Random Network Coding , 2007, IEEE Transactions on Information Theory.

[40]  Lihua Song,et al.  Zero-error network coding for acyclic network , 2003, IEEE Trans. Inf. Theory.

[41]  Ning Cai,et al.  Network coding and error correction , 2002, Proceedings of the IEEE Information Theory Workshop.

[42]  Philippe Delsarte,et al.  Properties and Applications of the Recurrence $F( {i + 1,k + 1,n + 1} ) = q^{k + 1} F( {i,k + 1,n} ) - q^k F( {i,k,n} )$ , 1976 .

[43]  Emina Soljanin,et al.  Bounds on Codes Based on Graph Theory , 2007, 2007 IEEE International Symposium on Information Theory.

[44]  Zhen Zhang,et al.  Network Error Correction Coding in Packetized Networks , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Chengdu.

[45]  Laura M. Chihara On the zeros of the Askey-Wilson polynomials, with applications to coding theory , 1987 .

[46]  William J. Martin,et al.  Anticodes for the Grassman and bilinear forms graphs , 1995, Des. Codes Cryptogr..

[47]  Shu-Tao Xia,et al.  Johnson type bounds on constant dimension codes , 2007, Des. Codes Cryptogr..

[48]  Natalia Silberstein,et al.  Error-Correcting Codes in Projective Spaces Via Rank-Metric Codes and Ferrers Diagrams , 2008, IEEE Transactions on Information Theory.

[49]  Zhen Zhang,et al.  Linear Network Error Correction Codes in Packet Networks , 2008, IEEE Transactions on Information Theory.