Heat Flow of Harmonic Maps Whose Gradients Belong to $$L^{n}_{x}L^{\infty}_{t}$$
暂无分享,去创建一个
[1] Mikhail Feldman,et al. Partial regularity for harmonic maps of evolution into spheres , 1994 .
[2] F. Lin,et al. Partial regularity for weak heat flows into spheres , 2010 .
[3] G. Prodi. Un teorema di unicità per le equazioni di Navier-Stokes , 1959 .
[4] J. Serrin. The initial value problem for the Navier-Stokes equations , 1963 .
[5] J. Eells,et al. Harmonic Mappings of Riemannian Manifolds , 1964 .
[6] Norbert Hungerbühler,et al. Heat flow ofp-harmonic maps with values into spheres , 1994 .
[7] G. M. Lieberman. SECOND ORDER PARABOLIC DIFFERENTIAL EQUATIONS , 1996 .
[8] Rugang Ye,et al. Finite-time blow-up of the heat flow of harmonic maps from surfaces , 1992 .
[9] F. John,et al. On functions of bounded mean oscillation , 1961 .
[10] Michael Struwe,et al. On the evolution of harmonic maps in higher dimensions , 1988 .
[11] Jean Leray,et al. Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .
[12] V. Sverák,et al. Backward Uniqueness for Parabolic Equations , 2003 .
[13] Vladimir Sverak,et al. L3,∞-solutions of the Navier-Stokes equations and backward uniqueness , 2003 .
[14] F. Lin,et al. Harmonic and quasi-harmonic spheres , 1999 .