A finite element approach to incompressible two-phase flow on manifolds

Abstract A two-phase Newtonian surface fluid is modelled as a surface Cahn–Hilliard–Navier–Stokes equation using a stream function formulation. This allows one to circumvent the subtleties in describing vectorial second-order partial differential equations on curved surfaces and allows for an efficient numerical treatment using parametric finite elements. The approach is validated for various test cases, including a vortex-trapping surface demonstrating the strong interplay of the surface morphology and the flow. Finally the approach is applied to a Rayleigh–Taylor instability and coarsening scenarios on various surfaces.

[1]  S. Neamtan THE MOTION OF HARMONIC WAVES IN THE ATMOSPHERE , 1946 .

[2]  L. Scriven,et al.  Dynamics of a fluid interface Equation of motion for Newtonian surface fluids , 1960 .

[3]  J. Marsden,et al.  Groups of diffeomorphisms and the motion of an incompressible fluid , 1970 .

[4]  J. Craggs Applied Mathematical Sciences , 1973 .

[5]  P. Saffman,et al.  Brownian motion in biological membranes. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[6]  P. Hohenberg,et al.  Theory of Dynamic Critical Phenomena , 1977 .

[7]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[8]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[9]  G. Dziuk,et al.  An algorithm for evolutionary surfaces , 1990 .

[10]  Taniguchi,et al.  Shape deformation and phase separation dynamics of two-component vesicles. , 1996, Physical review letters.

[11]  T. Frankel The Geometry of Physics , 1997 .

[12]  J. Lowengrub,et al.  Quasi–incompressible Cahn–Hilliard fluids and topological transitions , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[13]  Edriss S. Titi,et al.  The Navier-Stokes equations on the rotating 2-D sphere: Gevrey regularity and asymptotic degrees of freedom , 1999 .

[14]  Marius Mitrea,et al.  Navier-Stokes equations on Lipschitz domains in Riemannian manifolds , 2001 .

[15]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[16]  Guillermo Sapiro,et al.  Variational Problems and Partial Differential Equations on Implicit Surfaces: Bye Bye Triangulated Surfaces? , 2003 .

[17]  Sarah L Veatch,et al.  Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. , 2003, Biophysical journal.

[18]  T. Frankel The geometry of physics : an introduction , 2004 .

[19]  K. Yoshikawa,et al.  Domain-Growth Kinetics in a Cell-Sized Liposome , 2005, cond-mat/0510171.

[20]  Anomalously slow domain growth in fluid membranes with asymmetric transbilayer lipid distribution. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  A. Voigt,et al.  PDE's on surfaces---a diffuse interface approach , 2006 .

[22]  Xiaobing Feng,et al.  Fully Discrete Finite Element Approximations of the Navier-Stokes-Cahn-Hilliard Diffuse Interface Model for Two-Phase Fluid Flows , 2006, SIAM J. Numer. Anal..

[23]  Axel Voigt,et al.  A diffuse-interface approximation for surface diffusion including adatoms , 2007 .

[24]  Axel Voigt,et al.  AMDiS: adaptive multidimensional simulations , 2007 .

[25]  C. M. Elliott,et al.  Surface Finite Elements for Parabolic Equations , 2007 .

[26]  Charles M. Elliott,et al.  Finite elements on evolving surfaces , 2007 .

[27]  Takao Ohta,et al.  Growth dynamics of domains in ternary fluid vesicles. , 2007, Biophysical journal.

[28]  Pingwen Zhang,et al.  Continuum theory of a moving membrane. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Axel Voigt,et al.  Geodesic Evolution Laws---A Level-Set Approach , 2008, SIAM J. Imaging Sci..

[30]  Q. Du,et al.  Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches , 2006, Journal of Mathematical Biology.

[31]  Steven J. Ruuth,et al.  A simple embedding method for solving partial differential equations on surfaces , 2008, J. Comput. Phys..

[32]  Colin B. Macdonald,et al.  The Implicit Closest Point Method for the Numerical Solution of Partial Differential Equations on Surfaces , 2009, SIAM J. Sci. Comput..

[33]  Charles M. Elliott,et al.  ANALYSIS OF A DIFFUSE INTERFACE APPROACH TO AN ADVECTION DIFFUSION EQUATION ON A MOVING SURFACE , 2009 .

[34]  Xiangrong Li,et al.  SOLVING PDES IN COMPLEX GEOMETRIES: A DIFFUSE DOMAIN APPROACH. , 2009, Communications in mathematical sciences.

[35]  Luca Giomi,et al.  Two-dimensional matter: order, curvature and defects , 2008, 0812.3064.

[36]  Axel Voigt,et al.  Phase-field modeling of the dynamics of multicomponent vesicles: Spinodal decomposition, coarsening, budding, and fission. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Marino Arroyo,et al.  Relaxation dynamics of fluid membranes. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  S. Ramachandran,et al.  Lateral Organization of Lipids in Multi-component Liposomes , 2009 .

[39]  P. Voorhees,et al.  Morphology and topology in coarsening of domains via non-conserved and conserved dynamics , 2010 .

[40]  Ricardo H. Nochetto,et al.  Parametric FEM for geometric biomembranes , 2010, J. Comput. Phys..

[41]  D. Nelson,et al.  Vortices on curved surfaces , 2010 .

[42]  G. Gompper,et al.  Effects of an embedding bulk fluid on phase separation dynamics in a thin liquid film , 2010, 1002.4450.

[43]  Charles M. Elliott,et al.  A Surface Phase Field Model for Two-Phase Biological Membranes , 2010, SIAM J. Appl. Math..

[44]  Dieter Bothe,et al.  On the Two-Phase Navier–Stokes Equations with Boussinesq–Scriven Surface Fluid , 2010 .

[45]  M. Haataja,et al.  Hydrodynamic effects on spinodal decomposition kinetics in planar lipid bilayer membranes. , 2010, The Journal of chemical physics.

[46]  Hans-Christian Hege,et al.  Visualization and Mathematics III , 2011 .

[47]  Thomas J. R. Hughes,et al.  Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models , 2011, J. Comput. Phys..

[48]  Axel Voigt,et al.  Benchmark computations of diffuse interface models for two‐dimensional bubble dynamics , 2012 .