Vibrational hierarchy leads to dual-phonon transport in low thermal conductivity crystals

[1]  Yongjie Hu,et al.  Observation of strong higher-order lattice anharmonicity in Raman and infrared spectra , 2020 .

[2]  Wu Li,et al.  Effect of local chemistry and structure on thermal transport in doped GaAs , 2019, Physical Review Materials.

[3]  S. Baroni,et al.  Modeling heat transport in crystals and glasses from a unified lattice-dynamical approach , 2019, Nature Communications.

[4]  T. Zhu,et al.  Mixed phononic and non-phononic transport in hybrid lead halide perovskites: glass-crystal duality, dynamical disorder, and anharmonicity , 2019, Energy & Environmental Science.

[5]  N. Marzari,et al.  Unified theory of thermal transport in crystals and glasses , 2019, Nature Physics.

[6]  X. Ruan,et al.  Survey of ab initio phonon thermal transport , 2018, Materials Today Physics.

[7]  Yi Xia Revisiting lattice thermal transport in PbTe: The crucial role of quartic anharmonicity , 2018, Applied Physics Letters.

[8]  Jiemin Wang,et al.  Theoretical exploration of the abnormal trend in lattice thermal conductivity for monosilicates RE2SiO5 (RE = Dy, Ho, Er, Tm, Yb and Lu) , 2018, Journal of the European Ceramic Society.

[9]  M. Chan,et al.  Anharmonic stabilization and lattice heat transport in rocksalt β-GeTe , 2018, 1807.08012.

[10]  D. Parker,et al.  Two-channel model for ultralow thermal conductivity of crystalline Tl3VSe4 , 2018, Science.

[11]  G. Madsen,et al.  Resonant phonon scattering in semiconductors , 2018 .

[12]  R. Hanus,et al.  Minimum thermal conductivity in the context of diffuson-mediated thermal transport , 2018 .

[13]  G. Qin,et al.  Accelerating evaluation of converged lattice thermal conductivity , 2018, npj Computational Materials.

[14]  Tianli Feng,et al.  Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids , 2017 .

[15]  M. Schmidt,et al.  Direct measurement of individual phonon lifetimes in the clathrate compound Ba7.81Ge40.67Au5.33 , 2017, Nature Communications.

[16]  Z. Xiong,et al.  Orbitally driven low thermal conductivity of monolayer gallium nitride (GaN) with planar honeycomb structure: a comparative study. , 2017, Nanoscale.

[17]  Jiemin Wang,et al.  Pressure-induced low-lying phonon modes softening and enhanced thermal resistance in β -M g 2 A l 4 S i 5 O 18 , 2017 .

[18]  A. Minnich,et al.  Intrinsic localized mode and low thermal conductivity of PbSe , 2016, 1609.08254.

[19]  Jiemin Wang,et al.  Giant Phonon Anharmonicity and Anomalous Pressure Dependence of Lattice Thermal Conductivity in Y2Si2O7 silicate , 2016, Scientific Reports.

[20]  G. Su,et al.  Diverse anisotropy of phonon transport in two-dimensional group IV-VI compounds: A comparative study. , 2016, Nanoscale.

[21]  Tianli Feng,et al.  Quantum mechanical prediction of four-phonon scattering rates and reduced thermal conductivity of solids , 2015, 1510.00706.

[22]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[23]  O. Delaire,et al.  Twisting phonons in complex crystals with quasi-one-dimensional substructures , 2015, Nature Communications.

[24]  G. J. Snyder,et al.  Thermoelectric properties of the Zintl phases Yb5M2Sb6 (M = Al, Ga, In). , 2015, Dalton transactions.

[25]  B. Ouyang,et al.  The Role of Low-lying Optical Phonons in Lattice Thermal Conductance of Rare-earth Pyrochlores: A First-principle Study , 2015, 1503.03875.

[26]  Wu Li,et al.  ShengBTE: A solver of the Boltzmann transport equation for phonons , 2014, Comput. Phys. Commun..

[27]  A. McGaughey,et al.  Thermal conductivity accumulation in amorphous silica and amorphous silicon , 2014 .

[28]  Zijun Hu,et al.  Theoretical Predictions on Elastic Stiffness and Intrinsic Thermal Conductivities of Yttrium Silicates , 2014 .

[29]  Gang Chen,et al.  Applied Physics Reviews Nanoscale Thermal Transport. Ii. 2003–2012 , 2022 .

[30]  Igor A. Abrikosov,et al.  Temperature dependent effective potential method for accurate free energy calculations of solids , 2013, 1303.1145.

[31]  Wei Pan,et al.  Low thermal conductivity oxides , 2012 .

[32]  Renkun Chen,et al.  Thermal transport in phononic crystals: The role of zone folding effect , 2012 .

[33]  J. C. Chen,et al.  Electronic structure, mechanical properties and thermal conductivity of Ln2Zr2O7 (Ln = La, Pr, Nd, Sm, Eu and Gd) pyrochlore , 2011 .

[34]  Wei Zhang,et al.  Glass-like thermal conductivity in ytterbium-doped lanthanum zirconate pyrochlore , 2010 .

[35]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[36]  N. Mingo,et al.  Intrinsic lattice thermal conductivity of semiconductors from first principles , 2007 .

[37]  Yanchun Zhou,et al.  Theoretical elastic stiffness, structure stability and thermal conductivity of La2Zr2O7 pyrochlore , 2007 .

[38]  O. Beneš,et al.  High Temperature Heat Capacity of Nd2Zr2O7 and La2Zr2O7 Pyrochlores , 2005 .

[39]  Robert Vassen,et al.  Thermal Conductivity and Thermal Expansion Coefficients of the Lanthanum Rare‐Earth‐Element Zirconate System , 2003 .

[40]  Gang Chen,et al.  Partially coherent phonon heat conduction in superlattices , 2003 .

[41]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[42]  R. Withers,et al.  The oxygen positional parameter in pyrochlores and its dependence on disorder. , 2002 .

[43]  R. Withers,et al.  The oxygen positional parameter in pyrochlores and its dependence on disorder , 2002 .

[44]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[45]  R. Withers,et al.  Systematic Structural Change in Selected Rare Earth Oxide Pyrochlores as Determined by Wide-Angle CBED and a Comparison with the Results of Atomistic Computer Simulation , 2000 .

[46]  Jaroslav Fabian,et al.  Diffusons, locons and propagons: Character of atomie yibrations in amorphous Si , 1999 .

[47]  P. B. Allen,et al.  Diffusons, Locons, Propagons: Character of Atomic Vibrations in Amorphous Si , 1999, cond-mat/9907132.

[48]  M. Krishnaiah,et al.  Investigation of the thermal conductivity of selected compounds of gadolinium and lanthanum , 1997 .

[49]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[50]  Baroni,et al.  Anharmonic Phonon Lifetimes in Semiconductors from Density-Functional Perturbation Theory. , 1995, Physical review letters.

[51]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[52]  Allen,et al.  Thermal conductivity of disordered harmonic solids. , 1993, Physical review. B, Condensed matter.

[53]  Allen,et al.  Thermal conductivity and localization in glasses: Numerical study of a model of amorphous silicon. , 1993, Physical review. B, Condensed matter.

[54]  Watson,et al.  Lower limit to the thermal conductivity of disordered crystals. , 1992, Physical review. B, Condensed matter.

[55]  Allen,et al.  Thermal conductivity of glasses: Theory and application to amorphous Si. , 1989, Physical review letters.

[56]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[57]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[58]  Jialin Li,et al.  Theoretical and experimental determination of the major thermo-mechanical properties of RE2SiO5 (RE = Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) for environmental and thermal barrier coating applications , 2016 .

[59]  Robert O. Pohl,et al.  Lattice Vibrations and Heat Transport in Crystals and Glasses , 1988 .