Hybrid Intelligent Model for Fault Detection of a Lithium Iron Phosphate Power Cell Used in Electric Vehicles

Currently, the electrical mobility and the intermittent power generation facilities problem are two of the main purposes of batteries. Batteries, in general terms, have a complex behavior. Due to the usual electrochemical nature of batteries, several tests are made to check their performance, and it is very useful to know a priori how they are working in each case. By checking the battery temperatures for a specific voltage and current value, this work describes a hybrid intelligent model aimed at making fault detection of a LFP (Lithium Iron Phosphate - LiFePO4) power cell type, used in Electric Vehicles. A large set of operating points is obtained from a real system to create the dataset for the operation range of the power cell. Clusters of the different behavior zones have been obtained to accomplish the solution. Some simple regression methods have been applied for each cluster. Polynomial Regression, Artificial Neural Networks and Support Vector Regression were the combined techniques to develop the hybrid intelligent model proposed. The novel hybrid model allows to be achieved good results in all the operating range, detecting all the faults tested.

[1]  Héctor Quintián-Pardo,et al.  A hybrid intelligent system for PID controller using in a steel rolling process , 2013, Expert Syst. Appl..

[2]  José Luís Casteleiro-Roca,et al.  Hybrid Intelligent Model to Predict the SOC of a LFP Power Cell Type , 2014, HAIS.

[3]  Yu-Cheng Lee,et al.  Using modified IPA to evaluate supplier's performance: Multiple regression analysis and DEMATEL approach , 2012, Expert Syst. Appl..

[4]  Richard H. Myers,et al.  Modeling a MEMS deformable mirror using non-parametric estimation techniques. , 2010, Optics express.

[5]  Amparo Alonso-Betanzos,et al.  Efficiency of local models ensembles for time series prediction , 2011, Expert Syst. Appl..

[6]  Isaías García,et al.  Formalization and practical implementation of a conceptual model for PID controller tuning , 2011 .

[7]  Antonio Alvarez Huerta,et al.  PREDICCIÓN DE LA TEMPERATURA DE LA CONTENCIÓN PRIMARIA DE UNA CENTRAL NUCLEAR MEDIANTE REDES NEURONALES. , 2011 .

[8]  Héctor Quintián-Pardo,et al.  Intelligent Model for Fault Detection on Geothermal Exchanger of a Heat Pump , 2013, SOCO-CISIS-ICEUTE.

[9]  Hubert Cardot,et al.  SOM time series clustering and prediction with recurrent neural networks , 2011, Neurocomputing.

[10]  A. Piñón-Pazos,et al.  New approach for the QCM sensors characterization , 2014 .

[11]  N A Chaturvedi,et al.  Modeling, estimation, and control challenges for lithium-ion batteries , 2010, Proceedings of the 2010 American Control Conference.

[12]  S. Jakubek,et al.  Battery impedance emulation for hybrid and electric powertrain testing , 2012, 2012 IEEE Vehicle Power and Propulsion Conference.

[13]  Xueguang Shao,et al.  A consensus least squares support vector regression (LS-SVR) for analysis of near-infrared spectra of plant samples. , 2007, Talanta.

[14]  Héctor Quintián-Pardo,et al.  A Hybrid Regression System Based on Local Models for Solar Energy Prediction , 2014, Informatica.

[15]  J. A. Méndez,et al.  Design and implementation of a closed‐loop control system for infusion of propofol guided by bispectral index (BIS) , 2012, Acta anaesthesiologica Scandinavica.

[16]  A. Kai Qin,et al.  Enhanced neural gas network for prototype-based clustering , 2005, Pattern Recognit..

[17]  Erkan Topal,et al.  Optimizing overbreak prediction based on geological parameters comparing multiple regression analysis and artificial neural network , 2013 .

[18]  José Luís Casteleiro-Roca,et al.  Bio-inspired model of ground temperature behavior on the horizontal geothermal exchanger of an installation based on a heat pump , 2015, Neurocomputing.

[19]  ChangTaek Hyun,et al.  MRA-based revised CBR model for cost prediction in the early stage of construction projects , 2012, Expert Syst. Appl..

[20]  Marcello Canova,et al.  Fault Detection and Isolation of Automotive Air Conditioning Systems using First Principle Models , 2015 .

[21]  Héctor Quintián-Pardo,et al.  An intelligent fault detection system for a heat pump installation based on a geothermal heat exchanger , 2016, J. Appl. Log..

[22]  Jih-Sheng Lai,et al.  A grid-tie battery energy storage system , 2010, 2010 IEEE 12th Workshop on Control and Modeling for Power Electronics (COMPEL).

[23]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[24]  Jose Luis Calvo Rolle,et al.  CONTROLADOR NEURO-ROBUSTO PARA SISTEMAS NO LINEALES , 2011 .

[25]  Pablo García Bringas,et al.  UTILIZACIÓN DE ALGORITMOS DE META-CLASIFICACIÓN PARA LA MEJORA DE LOS MODELOS PREDICTIVOS DE CONTROL , 2013 .

[26]  Juan Aurelio Montero Sousa,et al.  DESARROLLO DE UN SISTEMA EXPERTO PARA AYUDAR A LA VERIFICACIÓN DEL SISTEMA "TACAN" , 2014 .

[27]  José Luís Calvo-Rolle,et al.  Detection of locally relevant variables using SOM-NG algorithm , 2013, Eng. Appl. Artif. Intell..

[28]  Riccardo Scattolini,et al.  Fault detection and isolation of bearings in a drive reducer of a hot steel rolling mill , 2015 .

[29]  Samuel Kaski,et al.  Discriminative clustering , 2005, Neurocomputing.

[30]  Dani Guzman,et al.  Using artificial neural networks for open-loop tomography. , 2011, Optics express.

[31]  José Luís Casteleiro-Roca,et al.  Modeling the Electromyogram (EMG) of Patients Undergoing Anesthesia During Surgery , 2015, SOCO.

[32]  Hazim B. Awbi,et al.  A study of the effect of heat source location in a ventilated room using multiple regression analysis , 2007 .

[33]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[34]  A. León,et al.  Modelling propofol pharmacodynamics using BIS‐guided anaesthesia , 2013, Anaesthesia.

[35]  K. A. Folly,et al.  Batteries and super-capacitors , 2012, IEEE Power and Energy Society Conference and Exposition in Africa: Intelligent Grid Integration of Renewable Energy Resources (PowerAfrica).

[36]  M. H. Ghaseminezhad,et al.  A novel self-organizing map (SOM) neural network for discrete groups of data clustering , 2011, Appl. Soft Comput..