H- and J-aggregate behavior in polymeric semiconductors.

Aggregates of conjugated polymers exhibit two classes of fundamental electronic interactions: those occurring within a given chain and those occurring between chains. The impact of such excitonic interactions on the photophysics of polymer films can be understood using concepts of J- and H-aggregation originally developed by Kasha and coworkers to treat aggregates of small molecules. In polymer assemblies, intrachain through-bond interactions lead to J-aggregate behavior, whereas interchain Coulombic interactions lead to H-aggregate behavior. The photophysics of common emissive conjugated polymer films are determined by a competition between intrachain, J-favoring interactions and interchain, H-favoring interactions. We review formalisms describing absorption and photoluminescence lineshapes, based on intra- and intermolecular excitonic coupling, electron-vibrational coupling, and correlated energetic disorder. Examples include regioregular polythiophenes, pheneylene-vinylenes, and polydiacetylene.

[1]  Jenny Clark,et al.  Role of intermolecular coupling in the photophysics of disordered organic semiconductors: aggregate emission in regioregular polythiophene. , 2007, Physical review letters.

[2]  S. Forrest,et al.  Nearly 100% internal phosphorescence efficiency in an organic light emitting device , 2001 .

[3]  Citrin Long intrinsic radiative lifetimes of excitons in quantum wires. , 1992, Physical review letters.

[4]  David E. Schilke,et al.  Low‐lying singlet states of a short polydiacetylene oligomer , 1987 .

[5]  F. Spano,et al.  Absorption and spontaneous emission in aggregates of conjugated polymers , 1998 .

[6]  Tõnu Pullerits,et al.  Exciton Delocalization in the B850 Light-Harvesting Complex: Comparison of Different Measures , 2001 .

[7]  B. Schwartz,et al.  Conjugated polymers as molecular materials: how chain conformation and film morphology influence energy transfer and interchain interactions. , 2003, Annual review of physical chemistry.

[8]  G. Scholes,et al.  Coherent Intrachain Energy Migration in a Conjugated Polymer at Room Temperature , 2009, Science.

[9]  Adam J. Moulé,et al.  J-Aggregate Behavior in Poly-3-hexylthiophene Nanofibers , 2012 .

[10]  Miller,et al.  Interchain Excitations in Conjugated Polymers. , 1995, Physical review letters.

[11]  R. Friend,et al.  Optical spectroscopy of highly ordered poly(p-phenylene vinylene) , 1993 .

[12]  J. Brédas,et al.  Molecular understanding of organic solar cells: the challenges. , 2009, Accounts of chemical research.

[13]  I. Scheblykin,et al.  Photoluminescence spectra of a conjugated polymer: from films and solutions to single molecules. , 2006, Physical chemistry chemical physics : PCCP.

[14]  Jean M. J. Fréchet,et al.  Molecular-weight-dependent mobilities in regioregular poly(3-hexyl-thiophene) diodes , 2005 .

[15]  Bradley,et al.  Exciton versus band description of the absorption and luminescence spectra in poly(p-phenylenevinylene). , 1990, Physical review. B, Condensed matter.

[16]  Liyan Yu,et al.  The impact of molecular weight on microstructure and charge transport in semicrystalline polymer semiconductors–poly(3-hexylthiophene), a model study , 2013 .

[17]  Optical Properties of Single Conjugated Polymer Chains (Polydiacetylenes) , 2006 .

[18]  Miller,et al.  Spatially indirect excitons as primary photoexcitations in conjugated polymers. , 1994, Physical review letters.

[19]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[20]  P. Barbara,et al.  Size-dependent spectroscopic properties of conjugated polymer nanoparticles. , 2006, The journal of physical chemistry. B.

[21]  T. Mančal,et al.  Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems , 2007, Nature.

[22]  E. Ehrenfreund,et al.  Phosphorescence superradiance in a Pt-containing π-conjugated polymer , 2012 .

[23]  Justin R Caram,et al.  Long-lived quantum coherence in photosynthetic complexes at physiological temperature , 2010, Proceedings of the National Academy of Sciences.

[24]  R. Hochstrasser,et al.  APPLICATION OF THE EXCITON MODEL TO MONO‐MOLECULAR LAMELLAR SYSTEMS * , 1964 .

[25]  Jenny Clark,et al.  Determining exciton bandwidth and film microstructure in polythiophene films using linear absorption spectroscopy , 2009, 0903.1670.

[26]  Christoph J. Brabec,et al.  Correlation Between Structural and Optical Properties of Composite Polymer/Fullerene Films for Organic Solar Cells , 2005 .

[27]  Two-dimensional spatial coherence of excitons in semicrystalline polymeric semiconductors: Effect of molecular weight , 2013, 1306.1805.

[28]  A. Köhler,et al.  Control of aggregate formation in poly(3‐hexylthiophene) by solvent, molecular weight, and synthetic method , 2012 .

[29]  F. Spano,et al.  Modeling disorder in polymer aggregates: the optical spectroscopy of regioregular poly(3-hexylthiophene) thin films. , 2005, The Journal of chemical physics.

[30]  W. Barford Excitons in conjugated polymers: a tale of two particles. , 2013, The journal of physical chemistry. A.

[31]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[32]  S. Mukamel,et al.  Multiple Exciton Coherence Sizes in Photosynthetic Antenna Complexes viewed by Pump−Probe Spectroscopy , 1997 .

[33]  R. T. Phillips,et al.  Polarization dependence of the ultrafast photoluminescence of oriented poly(p-phenylenevinylene) , 1997 .

[34]  F. Spano,et al.  Designing J- and H-aggregates through wave function overlap engineering: applications to poly(3-hexylthiophene). , 2012, The journal of physical chemistry. B.

[35]  Christoph J. Brabec,et al.  Influence of the molecular weight of poly(3-hexylthiophene) on the performance of bulk heterojunction solar cells , 2005 .

[36]  Ignacio B. Martini,et al.  Controlling Interchain Interactions in Conjugated Polymers: The Effects of Chain Morphology on Exciton-Exciton Annihilation and Aggregation in MEH-PPV Films , 2000 .

[37]  Mats Andersson,et al.  Laminated fabrication of polymeric photovoltaic diodes , 1998, Nature.

[38]  J. Loos,et al.  On the importance of morphology control in polymer solar cells. , 2010, Macromolecular rapid communications.

[39]  A. Heeger,et al.  Semiconducting polymers: the Third Generation. , 2010, Chemical Society reviews.

[40]  D. Ginger,et al.  Heterogeneity in polymer solar cells: local morphology and performance in organic photovoltaics studied with scanning probe microscopy. , 2010, Accounts of chemical research.

[41]  S. Haque,et al.  Controlling the Interaction of Light with Polymer Semiconductors , 2013, Advanced materials.

[42]  S. Mukamel,et al.  Polarons, localization, and excitonic coherence in superradiance of biological antenna complexes , 1997 .

[43]  R. Friend,et al.  Photoluminescence of poly(p-phenylenevinylene)–silica nanocomposites: Evidence for dual emission by Franck–Condon analysis , 2001 .

[44]  M. Schott,et al.  Optical evidence of a purely one-dimensional exciton density of states in a single conjugated polymer chain , 2002 .

[45]  Y. Z. Lee,et al.  Aggregated states of luminescent conjugated polymers in solutions , 2000 .

[46]  Jean M. J. Fréchet,et al.  Controlling the Field‐Effect Mobility of Regioregular Polythiophene by Changing the Molecular Weight , 2003 .

[47]  Jean M. J. Fréchet,et al.  Dependence of Regioregular Poly(3-hexylthiophene) Film Morphology and Field-Effect Mobility on Molecular Weight , 2005 .

[48]  T. Holstein,et al.  Studies of polaron motion: Part II. The “small” polaron , 1959 .

[49]  William Barford Exciton transfer integrals between polymer chains. , 2007, The Journal of chemical physics.

[50]  M. Schott,et al.  Fluorescence yield and lifetime of isolated polydiacetylene chains: Evidence for a one-dimensional exciton band in a conjugated polymer , 2002 .

[51]  S. Etemad,et al.  Excitation shifts of parallel conjugated polymers due to π‐electron dispersion forces , 1990 .

[52]  H. Fidder,et al.  SUPERRADIANT EMISSION AND OPTICAL DEPHASING IN J-AGGREGATES , 1990 .

[53]  M. Toney,et al.  A general relationship between disorder, aggregation and charge transport in conjugated polymers. , 2013, Nature materials.

[54]  K. Sanui,et al.  Coexistence of photoluminescence from two intrachain states in polythiophene films , 2003 .

[55]  Tracey M. Clarke,et al.  Charge photogeneration in organic solar cells. , 2010, Chemical reviews.

[56]  D. Wiersma,et al.  Dephasing-induced damping of superradiant emission in J-aggregates , 1990 .

[57]  Bo Li,et al.  Nanostructure dependence of field-effect mobility in regioregular poly(3-hexylthiophene) thin film field effect transistors. , 2006, Journal of the American Chemical Society.

[58]  Z. Ding,et al.  Photoluminescence and Raman spectra study of para-phenylenevinylene at low temperatures , 2004 .

[59]  Luping Yu,et al.  A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance. , 2010, Accounts of chemical research.

[60]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[61]  B. Boury,et al.  Exciton spectroscopy of red polydiacetylene chains in single crystals , 2007 .

[62]  P. Barbara,et al.  Low-Temperature Single-Molecule Spectroscopy of MEH-PPV Conjugated Polymer Molecules , 2004 .

[63]  Donal D. C. Bradley,et al.  Precursor route chemistry and electronic properties of poly(p-phenylenevinylene), poly[(2,5-dimethyl-p-phenylene)vinylene] and poly[(2,5-dimethoxy-p-phenylene)vinylene] , 1992 .

[64]  Valentin D. Mihailetchi,et al.  Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells , 2007 .

[65]  Jem Jos Haverkort,et al.  Relaxation of photo-excitations in films of oligo- and poly-(para-phenylene vinylene) derivatives , 2000 .

[66]  M. Johnston,et al.  The role of ultrafast torsional relaxation in the emission from polythiophene aggregates , 2010, 2010 Conference on Optoelectronic and Microelectronic Materials and Devices.

[67]  V. Sundström,et al.  Pump–probe spectroscopy of dissipative energy transfer dynamics in photosynthetic antenna complexes: A density matrix approach , 1997 .

[68]  P. Barbara,et al.  Single-molecule spectroscopy of conjugated polymers. , 2005, Accounts of chemical research.

[69]  A. Heeger,et al.  Ultrafast Relaxation of the Poly(3-hexylthiophene) Emission Spectrum , 2011 .

[70]  Ronald Österbacka,et al.  Spectroscopic Studies of Photoexcitations in Regioregular and Regiorandom Polythiophene Films , 2002 .

[71]  F. Spano,et al.  Vibronic coupling in quantum wires: applications to polydiacetylene. , 2011, The Journal of chemical physics.

[72]  M. Kasha,et al.  Enhancement of Phosphorescence Ability upon Aggregation of Dye Molecules , 1958 .

[73]  N. Stingelin,et al.  Charge separation in semicrystalline polymeric semiconductors by photoexcitation: is the mechanism intrinsic or extrinsic? , 2011, Physical review letters.

[74]  Jenny Clark,et al.  Determining exciton coherence from the photoluminescence spectral line shape in poly(3-hexylthiophene) thin films. , 2009, The Journal of chemical physics.

[75]  Xiaoniu Yang,et al.  Toward High-Performance Polymer Solar Cells: The Importance of Morphology Control , 2007 .

[76]  G. Weiser,et al.  Wannier excitons and Franz-Keldysh effect of polydiacetylene chains diluted in their single crystal monomer matrix , 1996 .

[77]  David Beljonne,et al.  Probing excitation delocalization in supramolecular chiral stacks by means of circularly polarized light: experiment and modeling. , 2007, Journal of the American Chemical Society.

[78]  W. Fann,et al.  Experimental and theoretical investigations of absorption and emission spectra of the light-emitting polymer MEH-PPV in solution , 2000 .

[79]  Voss,et al.  Enhanced order and electronic delocalization in conjugated polymers oriented by gel processing in polyethylene. , 1991, Physical review. B, Condensed matter.

[80]  David Beljonne,et al.  Interchain interactions in conjugated materials: The exciton model versus the supermolecular approach , 2000 .

[81]  F. Spano,et al.  Vibronic coupling in J-aggregates and beyond: a direct means of determining the exciton coherence length from the photoluminescence spectrum. , 2011, The journal of physical chemistry. B.

[82]  Cross-linked functionalized poly(3-hexylthiophene) nanofibers with tunable excitonic coupling. , 2013, ACS nano.

[83]  W. R. Salaneck,et al.  Electroluminescence in conjugated polymers , 1999, Nature.

[84]  M. Kasha,et al.  ENERGY TRANSFER MECHANISMS AND THE MOLECULAR EXCITON MODEL FOR MOLECULAR AGGREGATES. , 1963, Radiation research.

[85]  F. Spano The spectral signatures of Frenkel polarons in H- and J-aggregates. , 2010, Accounts of chemical research.

[86]  F. Spano,et al.  Interplay between intrachain and interchain interactions in semiconducting polymer assemblies: the HJ-aggregate model. , 2012, The Journal of chemical physics.

[87]  F. Spano,et al.  The red-phase of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV): a disordered HJ-aggregate. , 2013, The Journal of chemical physics.

[88]  Jean-Luc Brédas,et al.  Influence of Interchain Interactions on the Absorption and Luminescence of Conjugated Oligomers and Polymers: A Quantum-Chemical Characterization , 1998 .

[89]  Ullrich Scherf,et al.  "Organic Light-Emitting Devices: Synthesis, Properties and Applications" , 2005 .

[90]  F. Spano Absorption in regio-regular poly(3-hexyl)thiophene thin films: Fermi resonances, interband coupling and disorder , 2006 .

[91]  A. Salleo,et al.  Multi-phase microstructures drive exciton dissociation in neat semicrystalline polymeric semiconductors , 2015 .

[92]  R. Hayward,et al.  Probing Inter- and Intrachain Exciton Coupling in Isolated Poly(3-hexylthiophene) Nanofibers: Effect of Solvation and Regioregularity. , 2012, The journal of physical chemistry letters.

[93]  N. Banerji Sub-picosecond delocalization in the excited state of conjugated homopolymers and donor–acceptor copolymers , 2013 .

[94]  R. N. Marks,et al.  Light-emitting diodes based on conjugated polymers , 1990, Nature.

[95]  Christoph J. Brabec,et al.  Organic photovoltaics : concepts and realization , 2003 .

[96]  A. Köhler,et al.  Morphology-dependent energy transfer within polyfluorene thin films , 2004 .

[97]  C. Collison,et al.  Conformational Effects on the Photophysics of Conjugated Polymers: A Two Species Model for MEH−PPV Spectroscopy and Dynamics , 2001 .

[98]  Christoph J. Brabec,et al.  Organic photovoltaics: technology and market , 2004 .

[99]  Macroscopic coherence of a single exciton state in an organic quantum wire , 2005, cond-mat/0509095.

[100]  J. Kampf,et al.  Intermolecular interactions in pi-stacked conjugated molecules. Synthesis, structure, and spectral characterization of alkyl bithiazole oligomers. , 2003, Journal of the American Chemical Society.

[101]  R. Friend,et al.  Excitonic versus electronic couplings in molecular assemblies: The importance of non-nearest neighbor interactions. , 2009, The Journal of chemical physics.

[102]  A. Schenning,et al.  Supramolecular Electronic Coupling in Chiral Oligothiophene Nanostructures , 2006 .

[103]  G. Scholes,et al.  Electronic Energy Transfer and Quantum-Coherence in π-Conjugated Polymers† , 2011 .

[104]  R. Friend,et al.  π-electronic and electrical transport properties of conjugated polymer nanocomposites: Poly(p-phenylenevinylene) with homogeneously dispersed silica nanoparticles , 2002 .

[105]  M. Grell,et al.  Film morphology and photophysics of polyfluorene , 2000 .

[106]  G. Bazan,et al.  Controlled β‐Phase Formation in Poly(9,9‐di‐n‐octylfluorene) by Processing with Alkyl Additives , 2008 .

[107]  M. Schott,et al.  Fluorescence quantum yield and lifetime of `red' polydiacetylene chains isolated in their crystalline monomer matrix , 1999 .

[108]  Shijun Jia,et al.  Polymer–Fullerene Bulk‐Heterojunction Solar Cells , 2009, Advanced materials.

[109]  Jean-Luc Brédas Molecular understanding of organic solar cells: The challenges , 2013 .

[110]  Donal D. C. Bradley,et al.  The Effect of Poly(3‐hexylthiophene) Molecular Weight on Charge Transport and the Performance of Polymer:Fullerene Solar Cells , 2008 .

[111]  Anna Köhler,et al.  An order-disorder transition in the conjugated polymer MEH-PPV. , 2012, Journal of the American Chemical Society.

[112]  I. Silvestre,et al.  Identification of the optically active vibrational modes in the photoluminescence of MEH-PPV films. , 2008, The Journal of chemical physics.

[113]  Daniel Moses,et al.  Anisotropic photoluminescence properties of oriented poly( p -phenylene-vinylene) films: Effects of dispersion of optical constants , 2007 .

[114]  E. Knapp Lineshapes of molecular aggregates, exchange narrowing and intersite correlation , 1984 .

[115]  D. Thomsson,et al.  Single chain versus single aggregate spectroscopy of conjugated polymers. Where is the border? , 2010, Physical chemistry chemical physics : PCCP.

[116]  Donal D. C. Bradley,et al.  A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells , 2006 .

[117]  H. Sirringhaus,et al.  Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene) , 2003 .