SUPERCONVERGENCE OF DG METHOD FOR ONE-DIMENSIONAL SINGULARLY PERTURBED PROBLEMS

The convergence and superconvergence properties of the discontinuous Galerkin (DG) method for a singularly perturbed model problem in one-dimensional setting are studied. By applying the DG method with appropriately chosen numerical traces, the existence and uniqueness of the DG solution, the optimal order L2 error bounds, and 2p+1-order superconvergence of the numerical traces are established. The numerical results indicate that the DG method does not produce any oscillation even under the uniform mesh. Numerical experiments demonstrate that, under the uniform mesh, it seems impossible to obtain the uniform superconvergence of the numerical traces. Nevertheless, thanks to the implementation of the so-called Shishkin-type mesh, the uniform 2p + 1iorder superconvergence is observed numerically.

[1]  Rolf Stenberg,et al.  Finite element methods: superconvergence, post-processing, and a posteriori estimates , 1998 .

[2]  L. Wahlbin Superconvergence in Galerkin Finite Element Methods , 1995 .

[3]  Fatih Celiker,et al.  Superconvergence of the numerical traces of discontinuous Galerkin and Hybridized methods for convection-diffusion problems in one space dimension , 2007, Math. Comput..

[4]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[5]  Zhang,et al.  On the hp finite element method for the one dimensional singularly perturbed convection-diffusion problems , 2002 .

[6]  Lutz Tobiska,et al.  Numerical Methods for Singularly Perturbed Differential Equations , 1996 .

[7]  Christoph Schwab,et al.  The p and hp versions of the finite element method for problems with boundary layers , 1996, Math. Comput..

[8]  Dmitriy Leykekhman Uniform error estimates in the finite element method for a singularly perturbed reaction-diffusion problem , 2008, Math. Comput..

[9]  Hans-Görg Roos Layer‐Adapted Grids for Singular Perturbation Problems , 1998 .

[10]  Tao Tang,et al.  Error analysis for a Galerkin-spectral method with coordinate transformation for solving singularly perturbed problems , 2001 .

[11]  George Em Karniadakis,et al.  The Development of Discontinuous Galerkin Methods , 2000 .

[12]  J. J. Miller,et al.  Fitted Numerical Methods for Singular Perturbation Problems , 1996 .

[13]  Zhiming Chen,et al.  Sharp L1 a posteriori error analysis for nonlinear convection-diffusion problems , 2005, Math. Comput..

[14]  Zhimin Zhang,et al.  Finite element superconvergence approximation for one‐dimensional singularly perturbed problems , 2002 .

[15]  YanXu,et al.  LOCAL DISCONTINUOUS GALERKIN METHODS FOR THREE CLASSES OF NONLINEAR WAVE EQUATIONS , 2004 .

[16]  Martin Stynes,et al.  Steady-state convection-diffusion problems , 2005, Acta Numerica.

[17]  Giancarlo Sangalli,et al.  Analysis of a Multiscale Discontinuous Galerkin Method for Convection-Diffusion Problems , 2006, SIAM J. Numer. Anal..

[18]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[19]  Giancarlo Sangalli Robust a-posteriori estimator for advection-diffusion-reaction problems , 2008, Math. Comput..

[20]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..