First-principles quantum transport modeling of thermoelectricity in single-molecule nanojunctions with graphene nanoribbon electrodes

We overview the nonequilibrium Green function combined with density functional theory (NEGF-DFT) approach to modeling of independent electronic and phononic quantum transport in nanoscale thermoelectrics with examples focused on a new class of devices where a single organic molecule is attached to two metallic zigzag graphene nanoribbons (ZGNRs) via highly transparent contacts. Such contacts make possible injection of evanescent wavefunctions from the ZGNR electrodes, so that their overlap within the molecular region generates a peak in the electronic transmission around the Fermi energy of the device. Additionally, the spatial symmetry properties of the transverse propagating states in the semi-infinite ZGNR electrodes suppress hole-like contributions to the thermopower. Thus optimized thermopower, together with diminished phonon thermal conductance in a ZGNR|molecule|ZGNR inhomogeneous heterojunctions, yields the thermoelectric figure of merit ZT≃0.4 at room temperature with maximum ZT≃3 reached at very low temperatures T≃10 K (so that the latter feature could be exploited for thermoelectric cooling of, e.g., infrared sensors). The reliance on evanescent mode transport and symmetry of propagating states in the electrodes makes the electronic-transport-determined power factor in this class of devices largely insensitive to the type of sufficiently short organic molecule, which we demonstrate by showing that both 18-annulene and C10 molecule sandwiched by the two ZGNR electrodes yield similar thermopower. Thus, one can search for molecules that will further reduce the phonon thermal conductance (in the denominator of ZT) while keeping the electronic power factor (in the nominator of ZT) optimized. We also show how the often employed Brenner empirical interatomic potential for hydrocarbon systems fails to describe phonon transport in our single-molecule nanojunctions when contrasted with first-principles results obtained via NEGF-DFT methodology.

[1]  C. Stafford,et al.  Giant thermoelectric effect from transmission supernodes. , 2010, ACS nano.

[2]  C. B. Vining An inconvenient truth about thermoelectrics. , 2009, Nature materials.

[3]  J. Bernholc,et al.  First-principles methodology for quantum transport in multiterminal junctions. , 2008, The Journal of chemical physics.

[4]  Mark A. Ratner,et al.  Inelastic effects in molecular junction transport: scattering and self-consistent calculations for the Seebeck coefficient , 2007, 0709.3610.

[5]  F. Haupt,et al.  Current noise in molecular junctions: Effects of the electron-phonon interaction , 2010, 1007.4271.

[6]  Weitao Yang,et al.  Quantum-interference-controlled molecular electronics. , 2008, Nano letters.

[7]  D. A. Broido,et al.  Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene , 2010 .

[8]  A. Majumdar,et al.  Probing the chemistry of molecular heterojunctions using thermoelectricity. , 2008, Nano letters.

[9]  A. Hewson,et al.  Properties and Applications of Thermoelectric Materials , 2009 .

[10]  S. Sadat,et al.  Measurement of thermopower and current-voltage characteristics of molecular junctions to identify orbital alignment , 2010 .

[11]  Jian Wang,et al.  Ab initio modeling of quantum transport properties of molecular electronic devices , 2001 .

[12]  M. Kaviany,et al.  Efficiency of thermoelectric energy conversion in biphenyl-dithiol junctions: Effect of electron-phonon interactions , 2011 .

[13]  A. Aharony,et al.  Three-terminal thermoelectric transport through a molecular junction , 2010, 1005.3940.

[14]  A. Balandin Thermal properties of graphene and nanostructured carbon materials. , 2011, Nature materials.

[15]  Weitao Yang,et al.  Contact transparency of nanotube-molecule-nanotube junctions. , 2007, Physical review letters.

[16]  M. Ratner,et al.  Novel quantum interference effects in transport through molecular radicals. , 2011, Nano letters.

[17]  Gang Chen,et al.  Bulk nanostructured thermoelectric materials: current research and future prospects , 2009 .

[18]  A. Majumdar,et al.  Identifying the length dependence of orbital alignment and contact coupling in molecular heterojunctions. , 2009, Nano letters.

[19]  James Hone,et al.  Covalently Bridging Gaps in Single-Walled Carbon Nanotubes with Conducting Molecules , 2006, Science.

[20]  Lee R. White,et al.  Controlled Formation of Sharp Zigzag and Armchair Edges in Graphitic Nanoribbons , 2009 .

[21]  Stefano Sanvito,et al.  Algorithm for the construction of self-energies for electronic transport calculations based on singularity elimination and singular value decomposition , 2008 .

[22]  A. Fisher,et al.  The transfer of energy between electrons and ions in solids , 2006, cond-mat/0603531.

[23]  M I Katsnelson,et al.  Magnetic correlations at graphene edges: basis for novel spintronics devices. , 2007, Physical review letters.

[24]  Ravi Mahajan,et al.  On-chip cooling by superlattice-based thin-film thermoelectrics. , 2009, Nature nanotechnology.

[25]  A. Jauho,et al.  Surface-decorated silicon nanowires: a route to high-ZT thermoelectrics. , 2009, Physical review letters.

[26]  Mark A. Ratner,et al.  Molecular transport junctions: vibrational effects , 2006 .

[27]  P. Kim,et al.  Thermoelectric and magnetothermoelectric transport measurements of graphene. , 2008, Physical review letters.

[28]  G. Kirczenow,et al.  Quantized Thermal Conductance of Dielectric Quantum Wires , 1998, cond-mat/9801238.

[29]  Antti-Pekka Jauho,et al.  Inelastic transport theory from first principles: Methodology and application to nanoscale devices , 2006, cond-mat/0611562.

[30]  Shannon K. Yee,et al.  Fundamentals of energy transport, energy conversion, and thermal properties in organic-inorganic heterojunctions , 2010 .

[31]  K. Stokbro First-principles modeling of electron transport , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[32]  K. Flensberg,et al.  Nonlinear thermoelectric properties of molecular junctions with vibrational coupling , 2010, 1004.4500.

[33]  Hartmut Haug,et al.  Quantum Kinetics in Transport and Optics of Semiconductors , 2004 .

[34]  Irena Knezevic,et al.  Lattice thermal conductivity of graphene nanoribbons: Anisotropy and edge roughness scattering , 2011 .

[35]  H. Sevinçli,et al.  Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons , 2009, 0908.3207.

[36]  Deepak Srivastava,et al.  Phonon transmission through defects in carbon nanotubes from first principles , 2008 .

[37]  J. Maultzsch,et al.  Tight-binding description of graphene , 2002 .

[38]  Yu-Shen Liu,et al.  Thermoelectric efficiency in nanojunctions: a comparison between atomic junctions and molecular junctions. , 2009, ACS nano.

[39]  Mark S. Lundstrom,et al.  On Landauer versus Boltzmann and full band versus effective mass evaluation of thermoelectric transport coefficients , 2009, 0909.5222.

[40]  William A. Goddard,et al.  Silicon Nanowires as Efficient Thermoelectric Materials. , 2008 .

[41]  K. Thygesen,et al.  Graphical prediction of quantum interference-induced transmission nodes in functionalized organic molecules. , 2011, Physical chemistry chemical physics : PCCP.

[42]  S. Datta,et al.  Thermoelectric effect in molecular electronics , 2003, cond-mat/0301232.

[43]  Phonon drag effect in single-walled carbon nanotubes , 2002, cond-mat/0211120.

[44]  S. Mukerjee,et al.  Optimal thermoelectric figure of merit of a molecular junction , 2008, 0805.3374.

[45]  N. Mingo Anharmonic phonon flow through molecular-sized junctions , 2006 .

[46]  Alan J. H. McGaughey,et al.  Quantitative validation of the Boltzmann transport equation phonon thermal conductivity model under the single-mode relaxation time approximation , 2004 .

[47]  N. A. Romero,et al.  Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[48]  A. Majumdar,et al.  Enhanced Thermoelectric Performance of Rough Silicon Nanowires. , 2008 .

[49]  Yu-Shen Liu,et al.  Seebeck coefficient of thermoelectric molecular junctions: First-principles calculations , 2008, 0812.0400.

[50]  Arun Majumdar,et al.  Thermoelectricity in Molecular Junctions , 2007, Science.

[51]  H. Ness,et al.  Nonequilibrium inelastic electronic transport: Polarization effects and vertex corrections to the self-consistent Born approximation , 2011, 1107.1583.

[52]  K. Thygesen,et al.  Self-consistent GW calculations of electronic transport in thiol- and amine-linked molecular junctions , 2011 .

[53]  K. Held,et al.  Enhancement of the NaxCoO2 thermopower due to electronic correlations , 2010, 1104.1928.

[54]  C. Timm Tunneling through molecules and quantum dots: Master-equation approaches , 2008, 0801.1075.

[55]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[56]  K. Thygesen,et al.  The relation between structure and quantum interference in single molecule junctions. , 2010, Nano letters.

[57]  S. Roche,et al.  Charge transport in disordered graphene-based low dimensional materials , 2008, 0809.4630.

[58]  L. Vandersypen,et al.  Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes. , 2011, Nano letters.

[59]  Phonon effects in molecular transistors: Quantal and classical treatment , 2003, cond-mat/0311503.

[60]  M. Thoss,et al.  Vibrational nonequilibrium effects in the conductance of single molecules with multiple electronic states. , 2008, Physical review letters.

[61]  M. Dresselhaus,et al.  High thermoelectric figure-of-merit in kondo insulator nanowires at low temperatures. , 2011, Nano letters (Print).

[62]  Jian-Sheng Wang,et al.  First-principles study of heat transport properties of graphene nanoribbons. , 2010, Nano letters (Print).

[63]  J. Lü,et al.  Quantum thermal transport in nanostructures , 2008, 0802.2761.

[64]  Mark A. Ratner,et al.  Introducing molecular electronics , 2002 .

[65]  H. Linke,et al.  Measuring temperature gradients over nanometer length scales. , 2009, Nano letters.

[66]  J. P. Hartnett,et al.  Advances in Heat Transfer , 2003 .

[67]  Jian-Sheng Wang,et al.  Coupled electron and phonon transport in one-dimensional atomic junctions , 2007, 0704.0723.

[68]  Alan J. H. McGaughey,et al.  Phonon transport in molecular dynamics simulations: Formulation and thermal conductivity prediction. , 2006 .

[69]  S. Louie,et al.  Spatially resolving edge states of chiral graphene nanoribbons , 2011, 1101.1141.

[70]  H. Sevinçli,et al.  Engineering the figure of merit and thermopower in single-molecule devices connected to semiconducting electrodes , 2010 .

[71]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[72]  A. Jauho,et al.  Electron and phonon transport in silicon nanowires: Atomistic approach to thermoelectric properties , 2008, 0810.5462.

[73]  A. Seitsonen,et al.  Atomically precise bottom-up fabrication of graphene nanoribbons , 2010, Nature.

[74]  Yu-Shen Liu,et al.  Atomic-scale Field-effect Transistor as a Thermoelectric Power Generator and Self-powered Device , 2010, 1001.0822.

[75]  K. Held,et al.  The LDA+DMFT Route to Identify Good Thermoelectrics , 2009, 0903.2994.

[76]  Holger Fehske,et al.  Stability of edge states and edge magnetism in graphene nanoribbons , 2010, 1007.2602.

[77]  M. Sancho,et al.  Quick iterative scheme for the calculation of transfer matrices: application to Mo (100) , 1984 .

[78]  M. Taniguchi,et al.  Roles of lattice cooling on local heating in metal-molecule-metal junctions , 2010 .

[79]  A. Williamson,et al.  Atomistic design of thermoelectric properties of silicon nanowires. , 2008, Nano letters.

[80]  Gábor Csányi,et al.  Edge-functionalized and substitutionally doped graphene nanoribbons: Electronic and spin properties , 2007, Physical Review B.

[81]  J. Zimmermann,et al.  Vibrational modes and low-temperature thermal properties of graphene and carbon nanotubes: Minimal force-constant model , 2008, 0806.2845.

[82]  G. Mahan,et al.  The best thermoelectric. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[83]  Jian-Sheng Wang,et al.  Joule heating and thermoelectric properties in short single-walled carbon nanotubes: electron-phonon interaction effect , 2011, 1108.5817.

[84]  William H. Butler,et al.  On the equivalence of different techniques for evaluating the Green function for a semi-infinite system using a localized basis , 2004 .

[85]  T. Markussen,et al.  Controlling the transmission line shape of molecular t-stubs and potential thermoelectric applications. , 2011, The Journal of chemical physics.

[86]  Yoshiyuki Kawazoe,et al.  Thermoelectric properties of a nanocontact made of two-capped single-wall carbon nanotubes calculated within the tight-binding approximation , 2006 .

[87]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[88]  Yonatan Dubi,et al.  Thermoelectric effects in nanoscale junctions. , 2008, Nano letters.

[89]  Supriyo Datta,et al.  Influence of Dimensionality on Thermoelectric Device Performance , 2008, 0811.3632.

[90]  K. Thygesen,et al.  Multiterminal single-molecule–graphene-nanoribbon junctions with the thermoelectric figure of merit optimized via evanescent mode transport and gate voltage , 2011 .

[91]  J. Bernholc,et al.  Quantum-interference-controlled three-terminal molecular transistors based on a single ring-shaped molecule connected to graphene nanoribbon electrodes. , 2010, Physical review letters.

[92]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[93]  C. Stafford,et al.  Thermoelectric signatures of coherent transport in single-molecule heterojunctions. , 2009, Nano letters.

[94]  J. Pekola,et al.  Violation of the Wiedemann-Franz law in a single-electron transistor. , 2007, Physical review letters.

[95]  F. Nogueira,et al.  A primer in density functional theory , 2003 .

[96]  Terry M. Tritt,et al.  Thermoelectric Phenomena, Materials, and Applications , 2011 .

[97]  A. Majumdar,et al.  Room temperature thermal conductance of alkanedithiol self-assembled monolayers , 2006 .

[98]  K. Held,et al.  Electronic structure calculations using dynamical mean field theory , 2005, cond-mat/0511293.

[99]  Takhee Lee,et al.  Single Molecule Electronic Devices , 2011, Advanced materials.

[100]  Julian D. Gale,et al.  GULP: A computer program for the symmetry-adapted simulation of solids , 1997 .

[101]  Controlling quantum transport through a single molecule. , 2005, Nano letters.

[102]  C. Lambert,et al.  Giant thermopower and figure of merit in single-molecule devices , 2008, 0811.3029.

[103]  Kieron Burke,et al.  Self-interaction errors in density-functional calculations of electronic transport. , 2005, Physical review letters.

[104]  J. Cuevas,et al.  Length-dependent conductance and thermopower in single-molecule junctions of dithiolated oligophenylene derivatives: A density functional study , 2007, 0709.3588.

[105]  D. Areshkin,et al.  Electron density and transport in top-gated graphene nanoribbon devices: First-principles Green function algorithms for systems containing a large number of atoms , 2009, 0909.4568.

[106]  S. Louie,et al.  Thermopower of amine-gold-linked aromatic molecular junctions from first principles. , 2011, ACS nano.

[107]  Massimiliano Di Ventra,et al.  Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions , 2011 .

[108]  P. Ordejón,et al.  Density-functional method for nonequilibrium electron transport , 2001, cond-mat/0110650.

[109]  Yoshihiro Asai,et al.  Nonequilibrium phonon effects on transport properties through atomic and molecular bridge junctions , 2008 .

[110]  Stefano Curtarolo,et al.  Thermopower of molecular junctions: an ab initio study. , 2009, Nano letters.