Performance trends in high-end processors

Based on a first order cycle time model performance trends and limits are projected for both bipolar and CMOS processors. The key in identifying trends is the understanding of the pivotal factors at any given stage of technology progression. One such parameter is the physical area of the processor. In coming technologies there will be opposite demands placed on the system's area stemming from a need to reduce the proportion of interconnection capacitance and to send signals across the processor. Contrary to the usual perception, delays resulting from wiring capacitance decrease if processor area increases, while the minimization of signal travel times favors reducing area. The system size tradeoff in the case of bipolar processors is primarily determined by power density, while CMOS processor sizes are determined by wirability requirements. To achieve the full potential of CMOS, interconnections will have to be carefully planned. The performance limits of bipolar and room temperature CMOS uniprocessors are shown to be very similar. The highest performance technology on the horizon is liquid nitrogen temperature CMOS. Alternate technologies, based on III-V compound devices, or more exotic quantum structures, are not expected to play a role in future general-purpose high-end systems. >

[1]  Y. Taur,et al.  A high-performance 0.25- mu m CMOS technology. II. Technology , 1992 .

[2]  T. Watson,et al.  Geometry effects of small MOSFET devices , 1979, 1977 International Electron Devices Meeting.

[3]  Dimitri A. Antoniadis,et al.  Optimization of series resistance in sub-0.2 /spl mu/m SOI MOSFETs , 1993, Proceedings of IEEE International Electron Devices Meeting.

[4]  J. Colinge Silicon-on-Insulator Technology , 1991 .

[5]  P. Solomon A comparison of semiconductor devices for high-speed logic , 1982 .

[6]  R.H. Dennard,et al.  Design and experimental technology for 0.1-µm gate-length low-temperature operation FET's , 1987, IEEE Electron Device Letters.

[7]  D. Kern,et al.  High transconductance and velocity overshoot in NMOS devices at the 0.1- mu m gate-length level , 1988, IEEE Electron Device Letters.

[8]  A. E. Barish,et al.  Improved performance of IBM Enterprise System/9000 bipolar logic chips , 1992, IBM J. Res. Dev..

[9]  Milburn,et al.  Quantum optical Fredkin gate. , 1989, Physical review letters.

[10]  Yuan Taur,et al.  High performance 0.1 /spl mu/m CMOS devices with 1.5 V power supply , 1993, Proceedings of IEEE International Electron Devices Meeting.

[11]  M. Fukuma,et al.  A simple model for short channel MOSFET's , 1977, Proceedings of the IEEE.

[12]  M. Shur,et al.  Ballistic transport in semiconductor at low temperatures for low-power high-speed logic , 1979, IEEE Transactions on Electron Devices.

[13]  S. Laux,et al.  Comments on "Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures. II. Submicrometer MOSFETs" [with reply] , 1991 .

[14]  W. Donath Wire length distribution for placements of computer logic , 1981 .

[15]  H. H. Muller,et al.  Fully-compensated emitter-coupled logic: Eliminating the drawbacks of conventional ECL , 1973 .

[16]  A. Masaki,et al.  Possibilities of deep-submicrometer CMOS for very-high-speed computer logic , 1993, Proc. IEEE.

[17]  Gerard V. Kopcsay,et al.  High-Speed Signal Propagation on Lossy Transmission Lines , 1990, IBM J. Res. Dev..

[18]  R.H. Dennard,et al.  Inverter performance of deep-submicrometer MOSFETs , 1988, IEEE Electron Device Letters.

[19]  A. Toriumi,et al.  High-performance 0.10- mu m CMOS devices operating at room temperature , 1993, IEEE Electron Device Letters.

[20]  M. P. Lepselter,et al.  SB-IGFET: An insulated-gate field-effect transistor using Schottky barrier contacts for source and drain , 1968 .

[21]  Tadashi Shibata,et al.  Real-time reconfigurable logic circuits using neuron MOS transistors , 1993, 1993 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[22]  C. G. Hsi,et al.  Figures of merit for system path time estimation , 1990, Proceedings., 1990 IEEE International Conference on Computer Design: VLSI in Computers and Processors.

[23]  Kevin R. Covi Three-loop feedback control of fault-tolerant power supplies in IBM Enterprise System/9000 processors , 1992, IBM J. Res. Dev..

[24]  W. R. Heller,et al.  Wirability-designing wiring space for chips and chip packages , 1984, IEEE Design & Test of Computers.

[25]  Y. G. Wey,et al.  Room temperature 0.1 /spl mu/m CMOS technology with 11.8 ps gate delay , 1993, Proceedings of IEEE International Electron Devices Meeting.

[26]  A. Masaki,et al.  Possibilities of CMOS Mainframe and its Impact on Technology R&D , 1991, 1991 Symposium on VLSI Technology.

[27]  J. Warnock,et al.  A Room Temperature 0.1 /spl mu/m CMOS on SOI , 1993, Symposium 1993 on VLSI Technology.

[28]  M. Fischetti Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures. I. Homogeneous transport , 1991 .

[29]  J. S. Liptay Design of the IBM Enterprise System/9000 high-end processor , 1992, IBM J. Res. Dev..

[30]  C. Gunderson,et al.  Facet engineered elevated source/drain by selective Si epitaxy for 0.35 micron MOSFETS , 1992, 1992 International Technical Digest on Electron Devices Meeting.

[31]  Gary F. Goth,et al.  Dual-tapered-piston (DTP) module cooling for IBM Enterprise System/9000 systems , 1992, IBM J. Res. Dev..

[32]  W. E. Pence,et al.  The Fundamental Limits for Electronic Packaging and Systems , 1987 .

[33]  William E. Donath,et al.  Placement and average interconnection lengths of computer logic , 1979 .

[34]  Raphael Tsu,et al.  Superlattice and negative differential conductivity in semiconductors , 1970 .

[35]  Daniel C. Edelstein Three-dimensional capacitance modeling of advanced multilayer interconnection technologies , 1991 .

[36]  P. R. Smith,et al.  Quantum functional devices: resonant-tunneling transistors, circuits with reduced complexity, and multiple valued logic , 1989 .

[37]  V. L. Rideout,et al.  Very small MOSFET's for low-temperature operation , 1977, IEEE Transactions on Electron Devices.

[38]  Tak H. Ning,et al.  SOI for a 1-volt CMOS technology and application to a 512 Kb SRAM with 3.5 ns access time , 1993, Proceedings of IEEE International Electron Devices Meeting.

[39]  R. Pease,et al.  High-performance heat sinking for VLSI , 1981, IEEE Electron Device Letters.

[40]  S. Konaka,et al.  HSST BiCMOS technology with 26 ps ECL and 45 ps 2 V CMOS inverter , 1990, International Technical Digest on Electron Devices.

[41]  Paul Michael Solomon The Need For Low Resistance Interconnects In Future High-Speed Systems , 1988, Other Conferences.

[42]  Roger R. Schmidt,et al.  System cooling design for the water-cooled IBM Enterprise System/9000 processors , 1992, IBM J. Res. Dev..

[43]  J. Colinge Silicon-on-Insulator Technology: Materials to VLSI , 1991 .

[44]  C. Fiegna,et al.  Sub-50 nm gate length n-MOSFETs with 10 nm phosphorus source and drain junctions , 1993, Proceedings of IEEE International Electron Devices Meeting.

[45]  Roy L. Russo,et al.  On a Pin Versus Block Relationship For Partitions of Logic Graphs , 1971, IEEE Transactions on Computers.

[46]  R. Dennard,et al.  Experimental technology and performance of 0.1-mm-gate-length FETs operated at liquid nitrogen temperature , 1990 .

[47]  A. Seabaugh,et al.  Co-integrated resonant tunneling and heterojunction bipolar transistor full adder , 1993, Proceedings of IEEE International Electron Devices Meeting.

[48]  Marshall I. Nathan,et al.  Tunneling hot‐electron transfer amplifier: A hot‐electron GaAs device with current gain , 1985 .

[49]  S. Lloyd Envisioning a quantum supercomputer. , 1994, Science.

[50]  G. Baccarani,et al.  Generalized scaling theory and its application to a ¼ micrometer MOSFET design , 1984, IEEE Transactions on Electron Devices.

[51]  R. Dennard,et al.  Design of micron MOS switching devices , 1972 .

[52]  K. Likharev Correlated discrete transfer of single electrons in ultrasmall tunnel junctions , 1988 .

[53]  W. Donath Equivalence of memory to Random Logic , 1974 .

[54]  Rolf Landauer,et al.  Advanced technology and truth in advertising , 1990 .

[55]  J.D. Meindl,et al.  Optimal interconnection circuits for VLSI , 1985, IEEE Transactions on Electron Devices.

[56]  R. Merkle Reversible electronic logic using switches , 1993 .

[57]  George A. Sai-Halasz,et al.  Directions in future high end processors , 1992, Proceedings 1992 IEEE International Conference on Computer Design: VLSI in Computers & Processors.

[58]  M. Kozicki,et al.  Nanostructure Physics and Fabrication , 1989 .