CNS Tumor Prediction Using Gene Expression Data Part II

In this chapter, we propose a novel algorithm for characterizing a variety of CNS tumors. The proposed algorithm is illustrated with an analysis of an Affymetrix gene expression data from CNS tumor samples (Pomeroy et al., 2002). As discussed in the previous chapter entitled: CNS Tumor Prediction Using Gene Expression Data Part I, we used an ANOVA model to normalize the microarray gene expression measurements. In this chapter, we introduce a systemic way of building tumor prototypes to facilitate automatic prediction of CNS tumors.

[1]  Kevin Curran,et al.  Ubiquitous Developments in Ambient Computing and Intelligence: Human-Centered Applications , 2011 .

[2]  Ash A. Alizadeh,et al.  Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling , 2000, Nature.

[3]  K. Pollard,et al.  Resampling-based Multiple Testing: Asymptotic Control of Type I Error and Applications to Gene Expression Data , 2003 .

[4]  Fariba Sadri,et al.  Logic-Based Approaches to Intention Recognition , 2011 .

[5]  Pierre R. Bushel,et al.  Assessing Gene Significance from cDNA Microarray Expression Data via Mixed Models , 2001, J. Comput. Biol..

[6]  Juan R. Rabuñal,et al.  Encyclopedia of Artificial Intelligence (3 Volumes) , 2009, Encyclopedia of Artificial Intelligence.

[7]  M. Bednarski,et al.  Comparing genomic and histologic correlations to radiographic changes in tumors: a murine SCC VII model study. , 2003, Academic radiology.

[8]  Jeffrey P. Townsend,et al.  Resolution of large and small differences in gene expression using models for the Bayesian analysis of gene expression levels and spotted DNA microarrays , 2004, BMC Bioinformatics.

[9]  Shouhong Wang,et al.  A Model for Monitoring and Enforcing Online Auction Ethics , 2005, Int. J. Intell. Inf. Technol..

[10]  U. Alon,et al.  Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[11]  J. Townsend,et al.  BMC Genomics BioMed Central Methodology article , 2003 .

[12]  G. A. Whitmore,et al.  Importance of replication in microarray gene expression studies: statistical methods and evidence from repetitive cDNA hybridizations. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[13]  V. Sugumaran The Inaugural Issue of the International Journal of Intelligent Information Technologies , 2005 .

[14]  John D. Storey,et al.  Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach , 2004 .

[15]  Fulvio Mastrogiovanni,et al.  Proactive Assistance in Ecologies of Physically Embedded Intelligent Systems: A Constraint-Based Approach , 2011 .

[16]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[17]  Amar Gajjar,et al.  Radial glia cells are candidate stem cells of ependymoma. , 2005, Cancer cell.

[18]  D. Hartl,et al.  Bayesian analysis of gene expression levels: statistical quantification of relative mRNA level across multiple strains or treatments , 2002, Genome Biology.

[19]  Jafar M. H. Ali,et al.  Content-Based Image Classification and Retrieval: A Rule-based System Using Rough Sets Framework , 2007, Int. J. Intell. Inf. Technol..

[20]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[21]  John D. Storey A direct approach to false discovery rates , 2002 .

[22]  Harold J. Lagroue Supporting Structured Group Decision Making Through System-Directed User Guidance: An Experimental Study , 2008, Int. J. Intell. Inf. Technol..

[23]  John D. Storey The positive false discovery rate: a Bayesian interpretation and the q-value , 2003 .

[24]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[25]  J. Mesirov,et al.  Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Sandrine Dudoit,et al.  Multiple Testing. Part II. Step-Down Procedures for Control of the Family-Wise Error Rate , 2004, Statistical applications in genetics and molecular biology.

[27]  David E. Misek,et al.  Characterization of gene expression profiles associated with glioma progression using oligonucleotide-based microarray analysis and real-time reverse transcription-polymerase chain reaction. , 2003, The American journal of pathology.

[28]  Kevin Curran,et al.  Proactive Context-Aware Middleware , 2011 .

[29]  M. J. van der Laan,et al.  Augmentation Procedures for Control of the Generalized Family-Wise Error Rate and Tail Probabilities for the Proportion of False Positives , 2004, Statistical applications in genetics and molecular biology.

[30]  Colin D. Meiklejohn,et al.  Sex-Dependent Gene Expression and Evolution of the Drosophila Transcriptome , 2003, Science.

[31]  S. Shapiro,et al.  An Analysis of Variance Test for Normality (Complete Samples) , 1965 .

[32]  C. Müller,et al.  Large-scale clustering of cDNA-fingerprinting data. , 1999, Genome research.

[33]  Sylvia B. Encheva,et al.  Web-Based Assessment System Applying Many-Valued Logic , 2009, Encyclopedia of Artificial Intelligence.

[34]  Vijayan Sugumaran Intelligent Information Technologies and Applications , 2008 .

[35]  John D. Storey,et al.  Empirical Bayes Analysis of a Microarray Experiment , 2001 .

[36]  Doulaye Dembélé,et al.  Fuzzy C-means Method for Clustering Microarray Data , 2003, Bioinform..

[37]  Mark J. van der Laan,et al.  Choice of a null distribution in resampling-based multiple testing , 2004 .

[38]  Robert Tibshirani,et al.  Statistical Significance for Genome-Wide Experiments , 2003 .

[39]  Min Song,et al.  Combining Supervised Learning Techniques to Key-Phrase Extraction for Biomedical Full-Text , 2011, Int. J. Intell. Inf. Technol..

[40]  T. Poggio,et al.  Prediction of central nervous system embryonal tumour outcome based on gene expression , 2002, Nature.

[41]  John D. Storey,et al.  Statistical significance for genomewide studies , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[43]  Michael Lawo,et al.  IT-ASSIST: Towards Usable Applications for Elderly People , 2011, Int. J. Ambient Comput. Intell..

[44]  S. Richardson,et al.  Bayesian Modeling of Differential Gene Expression , 2006, Biometrics.

[45]  Peter Bühlmann,et al.  Supervised clustering of genes , 2002, Genome Biology.

[46]  Gary A. Churchill,et al.  Analysis of Variance for Gene Expression Microarray Data , 2000, J. Comput. Biol..

[47]  Addisson Salazar,et al.  Automatic Classification of Impact-Echo Spectra II , 2009, Encyclopedia of Artificial Intelligence.

[48]  Joseph G Ibrahim,et al.  Bayesian Error‐in‐Variable Survival Model for the Analysis of GeneChip Arrays , 2005, Biometrics.

[49]  Sandrine Dudoit,et al.  Multiple Testing. Part I. Single-Step Procedures for Control of General Type I Error Rates , 2004, Statistical applications in genetics and molecular biology.