The neuronal channelopathies.

This review addresses the molecular and cellular mechanisms of diseases caused by inherited mutations of ion channels in neurones. Among important recent advances is the elucidation of several dominantly inherited epilepsies caused by mutations of both voltage-gated and ligand-gated ion channels. The neuronal channelopathies show evidence of phenotypic convergence; notably, episodic ataxia can be caused by mutations of either calcium or potassium channels. The channelopathies also show evidence of phenotypic divergence; for instance, different mutations of the same calcium channel gene are associated with familial hemiplegic migraine, episodic or progressive ataxia, coma and epilepsy. Future developments are likely to include the discovery of other ion channel genes associated with inherited and sporadic CNS disorders. The full range of manifestations of inherited ion channel mutations remains to be established.

[1]  R. Kraus,et al.  Familial Hemiplegic Migraine Mutations Change α1ACa2+ Channel Kinetics* , 1998, The Journal of Biological Chemistry.

[2]  P. O'Connell,et al.  A missense mutation in the gene encoding the α1 subunit of the inhibitory glycine receptor in the spasmodic mouse , 1994, Nature Genetics.

[3]  S. Berkovic,et al.  A potassium channel mutation in neonatal human epilepsy. , 1998, Science.

[4]  D. A. Brown,et al.  Activation of Expressed KCNQ Potassium Currents and Native Neuronal M-Type Potassium Currents by the Anti-Convulsant Drug Retigabine , 2001, The Journal of Neuroscience.

[5]  S. Chiu,et al.  Specific Alteration of Spontaneous GABAergic Inhibition in Cerebellar Purkinje Cells in Mice Lacking the Potassium Channel Kv1.1 , 1999, The Journal of Neuroscience.

[6]  S. Grissmer,et al.  Expression in mammalian cells and electrophysiological characterization of two mutant Kv1.1 channels causing episodic ataxia type 1 (EA‐1) , 1999, The European journal of neuroscience.

[7]  T. Lewis,et al.  Properties of human glycine receptors containing the hyperekplexia mutation α1(K276E), expressed in Xenopus oocytes , 1998, The Journal of physiology.

[8]  A. Draguhn,et al.  Disruption of ClC-3, a Chloride Channel Expressed on Synaptic Vesicles, Leads to a Loss of the Hippocampus , 2001, Neuron.

[9]  T. Mizutani,et al.  Cytoplasmic and nuclear polyglutamine aggregates in SCA6 Purkinje cells , 2001, Neurology.

[10]  P. Schwartzkroin,et al.  Heteromultimeric K+ channels in terminal and juxtaparanodal regions of neurons , 1993, Nature.

[11]  Robin J. Leach,et al.  A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family , 1998, Nature Genetics.

[12]  K. Fischbeck,et al.  Connexin mutations in X-linked Charcot-Marie-Tooth disease. , 1993, Science.

[13]  R. Gardiner Genetic basis of the human epilepsies , 1999, Epilepsy Research.

[14]  D Bertrand,et al.  An insertion mutation of the CHRNA4 gene in a family with autosomal dominant nocturnal frontal lobe epilepsy. , 1997, Human molecular genetics.

[15]  Y. Mori,et al.  Direct Alteration of the P/Q-Type Ca2+ Channel Property by Polyglutamine Expansion in Spinocerebellar Ataxia 6 , 1999, The Journal of Neuroscience.

[16]  L. Dalprà,et al.  A novel mutation (Gln266-->His) in the alpha 1 subunit of the inhibitory glycine-receptor gene (GLRA1) in hereditary hyperekplexia. , 1996, American journal of human genetics.

[17]  C. Gomez,et al.  The Polyglutamine Expansion in Spinocerebellar Ataxia Type 6 Causes a β Subunit-Specific Enhanced Activation of P/Q-Type Calcium Channels in Xenopus Oocytes , 2000, The Journal of Neuroscience.

[18]  J. Bormann,et al.  Decreased agonist affinity and chloride conductance of mutant glycine receptors associated with human hereditary hyperekplexia. , 1994, The EMBO journal.

[19]  A. Ballabio,et al.  The nicotinic receptor beta 2 subunit is mutant in nocturnal frontal lobe epilepsy. , 2000, Nature genetics.

[20]  A. Vighetto,et al.  Phosphorus and proton magnetic resonance spectroscopy in episodic ataxia type 2 , 1999, Annals of neurology.

[21]  David A. Williams,et al.  Mutant GABAA receptor γ2-subunit in childhood absence epilepsy and febrile seizures , 2001, Nature Genetics.

[22]  K. Friend,et al.  Detection of a novel missense mutation and second recurrent mutation in the CACNA1A gene in individuals with EA-2 and FHM , 1999, Human Genetics.

[23]  B. Sakmann,et al.  Heteromultimeric channels formed by rat brain potassium-channel proteins , 1990, Nature.

[24]  M. Blanar,et al.  Functional Expression of Two KvLQT1-related Potassium Channels Responsible for an Inherited Idiopathic Epilepsy* , 1998, The Journal of Biological Chemistry.

[25]  T. Soong,et al.  Splicing of α1A subunit gene generates phenotypic variants of P- and Q-type calcium channels , 1999, Nature Neuroscience.

[26]  S. Keevil,et al.  Familial periodic cerebellar ataxia: A problem of cerebellar intracellular pH homeostasis , 1992, Annals of neurology.

[27]  S. Nelson,et al.  Familial episodic ataxia: Clinical heterogeneity in four families linked to chromosome 19p , 1997, Annals of neurology.

[28]  M Montal,et al.  A missense mutation of the Na+ channel αII subunit gene Nav1.2 in a patient with febrile and afebrile seizures causes channel dysfunction , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Mark Leppert,et al.  A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns , 1998, Nature Genetics.

[30]  M. Leppert,et al.  Benign familial neonatal convulsions linked to genetic markers on chromosome 20 , 1989, Nature.

[31]  E. Storey,et al.  Identification of a novel missense mutation L329I in the episodic ataxia type 1 gene KCNA1 —A challenging problem , 2000, Human Mutation.

[32]  I. Scheffer,et al.  Neuronal sodium-channel alpha1-subunit mutations in generalized epilepsy with febrile seizures plus. , 2001, American journal of human genetics.

[33]  A. Ballabio,et al.  The nicotinic receptor β2 subunit is mutant in nocturnal frontal lobe epilepsy , 2000, Nature Genetics.

[34]  Bernhard Lüscher,et al.  Postsynaptic clustering of major GABAA receptor subtypes requires the γ2 subunit and gephyrin , 1998, Nature Neuroscience.

[35]  Sebastian Pascarelle,et al.  Unusual spectral energy distribution of a galaxy previously reported to be at redshift 6.68 , 2000, Nature.

[36]  William B. Dobyns,et al.  Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the α1A-voltage-dependent calcium channel , 1997, Nature Genetics.

[37]  P. O'Connell,et al.  Mutations in the α1 subunit of the inhibitory glycine receptor cause the dominant neurologic disorder, hyperekplexia , 1993, Nature Genetics.

[38]  P. Schwartzkroin,et al.  Localization of Kv1.1 and Kv1.2, two K channel proteins, to synaptic terminals, somata, and dendrites in the mouse brain , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  C. Fletcher,et al.  Excitatory but not inhibitory synaptic transmission is reduced in lethargic (Cacnb4(lh)) and tottering (Cacna1atg) mouse thalami. , 1999, Journal of neurophysiology.

[40]  M. Hanna,et al.  Neurological channelopathies: diagnosis and therapy in the new millennium. , 1999, Annals of medicine.

[41]  Katsuhiro Kobayashi,et al.  A novel mutation of CHRNA4 responsible for autosomal dominant nocturnal frontal lobe epilepsy , 1999, Neurology.

[42]  T. Jentsch Neuronal KCNQ potassium channels:physislogy and role in disease , 2000, Nature Reviews Neuroscience.

[43]  D. Price,et al.  Episodic ataxia/myokymia mutations functionally expressed in the Shaker potassium channel , 1999, Neuroscience.

[44]  S. Cannon,et al.  Ion-channel defects and aberrant excitability in myotonia and periodic paralysis , 1996, Trends in Neurosciences.

[45]  K. Stauderman,et al.  Functional Consequences of Mutations in the Human α1A Calcium Channel Subunit Linked to Familial Hemiplegic Migraine , 1999, The Journal of Neuroscience.

[46]  I. Scheffer,et al.  Mutant GABA(A) receptor gamma2-subunit in childhood absence epilepsy and febrile seizures. , 2001, Nature genetics.

[47]  J. Hell,et al.  Immunochemical identification and subcellular distribution of the alpha 1A subunits of brain calcium channels , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  J. Adelman,et al.  Episodic ataxia type‐1 mutations in the hKv1.1 cytoplasmic pore region alter the gating properties of the channel , 1998, The EMBO journal.

[49]  J G Nutt,et al.  Episodic ataxias as channelopathies , 1995, Annals of neurology.

[50]  A. Mitsudome,et al.  A novel mutation of KCNQ3 (c.925T→C) in a Japanese family with benign familial neonatal convulsions , 2000, Annals of neurology.

[51]  A. Spauschus,et al.  A novel mutation in the human voltage-gated potassium channel gene (Kv1.1) associates with episodic ataxia type 1 and sometimes with partial epilepsy. , 1999, Brain : a journal of neurology.

[52]  A. Aguzzi,et al.  Benzodiazepine-insensitive mice generated by targeted disruption of the gamma 2 subunit gene of gamma-aminobutyric acid type A receptors. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[53]  A. Vighetto,et al.  High prevalence of CACNA1A truncations and broader clinical spectrum in episodic ataxia type 2 , 1999, Neurology.

[54]  W. White,et al.  A frameshift mutation in the mouse alpha 1 glycine receptor gene (Glra1) results in progressive neurological symptoms and juvenile death. , 1994, Human molecular genetics.

[55]  I. Scheffer,et al.  CHRNB2 is the second acetylcholine receptor subunit associated with autosomal dominant nocturnal frontal lobe epilepsy. , 2001, American journal of human genetics.

[56]  J P Roche,et al.  Reconstitution of Muscarinic Modulation of the KCNQ2/KCNQ3 K+ Channels That Underlie the Neuronal M Current , 2000, The Journal of Neuroscience.

[57]  J P Changeux,et al.  Nicotinic receptor function: new perspectives from knockout mice. , 2000, Trends in pharmacological sciences.

[58]  M. Owen,et al.  Evidence for recessive as well as dominant forms of startle disease (hyperekplexia) caused by mutations in the alpha 1 subunit of the inhibitory glycine receptor. , 1994, Human molecular genetics.

[59]  J. Adelman,et al.  Episodic ataxia results from voltage-dependent potassium channels with altered functions , 1995, Neuron.

[60]  L. Shield,et al.  Hyperekplexia as cause of abnormal intrauterine movements , 1995, The Lancet.

[61]  F. Ashcroft Ion channels in viruses , 2000 .

[62]  T. Mayer,et al.  Coding and noncoding variation of the human calcium-channel beta4-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. , 2000, American journal of human genetics.

[63]  L. Role,et al.  Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. , 1995, Science.

[64]  C. Fletcher,et al.  Dystonia and cerebellar atrophy in Cacna1a null mice lacking P/Q calcium channel activity , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[65]  Dane M. Chetkovich,et al.  Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms , 2000, Nature.

[66]  M. von Knebel Doeberitz,et al.  A GLRA1 null mutation in recessive hyperekplexia challenges the functional role of glycine receptors. , 1996, American journal of human genetics.

[67]  J. Nutt,et al.  Autosomal dominant episodic ataxia: A heterogeneous syndrome , 1986, Movement disorders : official journal of the Movement Disorder Society.

[68]  Kortaro Tanaka,et al.  Disruption of the Epilepsy KCNQ2 Gene Results in Neural Hyperexcitability , 2000, Journal of neurochemistry.

[69]  Dirk Feldmeyer,et al.  Early-Onset Epilepsy and Postnatal Lethality Associated with an Editing-Deficient GluR-B Allele in Mice , 1995, Science.

[70]  T. Kuner,et al.  Novel GLRA1 Missense Mutation (P250T) in Dominant Hyperekplexia Defines an Intracellular Determinant of Glycine Receptor Channel Gating , 1999, The Journal of Neuroscience.

[71]  W. Catterall Structure and regulation of voltage-gated Ca2+ channels. , 2000, Annual review of cell and developmental biology.

[72]  D. Bertrand,et al.  Properties of neuronal nicotinic acetylcholine receptor mutants from humans suffering from autosomal dominant nocturnal frontal lobe epilepsy , 1998, British journal of pharmacology.

[73]  K. Rhodes,et al.  Type I and type II Na+ channel α‐subunit polypeptides exhibit distinct spatial and temporal patterning, and association with auxiliary subunits in rat brain , 1999, The Journal of comparative neurology.

[74]  S. Chiu,et al.  Temperature-Sensitive Neuromuscular Transmission in Kv1.1 Null Mice: Role of Potassium Channels under the Myelin Sheath in Young Nerves , 1998, The Journal of Neuroscience.

[75]  J. Prud'homme,et al.  Autosomal dominant nocturnal frontal lobe epilepsy in a Spanish family with a Ser252Phe mutation in the CHRNA4 gene. , 1999, Archives of neurology.

[76]  A. Spauschus,et al.  Functional Characterization of a Novel Mutation in KCNA1 in Episodic Ataxia Type 1 Associated with Epilepsy , 1999, Annals of the New York Academy of Sciences.

[77]  F. Lehmann-Horn,et al.  Voltage-gated ion channels and hereditary disease. , 1999, Physiological reviews.

[78]  A. Ohnishi,et al.  SCA6 mutation analysis in a large cohort of the Japanese patients with late-onset pure cerebellar ataxia , 1998, Journal of the Neurological Sciences.

[79]  B S Brown,et al.  KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. , 1998, Science.

[80]  A. L. Goldin,et al.  A gain-of-function mutation in the sodium channel gene Scn2a results in seizures and behavioral abnormalities , 2001, Neuroscience.

[81]  A. Vighetto,et al.  Magnetic resonance imaging in familial paroxysmal ataxia. , 1988, Archives of neurology.

[82]  G. Giacoia,et al.  Hyperekplexia associated with apnea and sudden infant death syndrome. , 1994, Archives of pediatrics & adolescent medicine.

[83]  J. Ruppersberg Ion Channels in Excitable Membranes , 1996 .

[84]  L. Lagae,et al.  De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. , 2001, American journal of human genetics.

[85]  G. Cirillo,et al.  Benign familial neonatal convulsions (BFNC) resulting from mutation of the KCNQ2 voltage sensor , 2000, European Journal of Human Genetics.

[86]  Samuel F. Berkovic,et al.  Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel ß1 subunit gene SCN1B , 1998, Nature Genetics.

[87]  Stéphanie Baulac,et al.  Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2 , 2000, Nature Genetics.

[88]  J. Benson,et al.  Postsynaptic clustering of major GABAA receptor subtypes requires the gamma 2 subunit and gephyrin. , 1998, Nature neuroscience.

[89]  O. Steinlein,et al.  A KCNQ2 splice site mutation causing benign neonatal convulsions in a Scottish family. , 2000, Neuropediatrics.

[90]  O. Hiort Neonatal Endocrinology of Abnormal Male Sexual Differentiation: Molecular Aspects , 2000, Hormone Research in Paediatrics.

[91]  Not Available Not Available,et al.  Three novel KCNA1 mutations in episodic ataxia type I families , 1998, Human Genetics.

[92]  C. Marsden,et al.  Autosomal dominant frontal epilepsy misdiagnosed as sleep disorder , 1994, The Lancet.

[93]  H. Scheffer,et al.  Hereditary myokymia and paroxysmal ataxia linked to chromosome 12 is responsive to acetazolamide. , 1995, Journal of neurology, neurosurgery, and psychiatry.

[94]  F. Elmslie,et al.  Analysis of GLRA1 in hereditary and sporadic hyperekplexia: a novel mutation in a family cosegregating for hyperekplexia and spastic paraparesis. , 1996, Journal of medical genetics.

[95]  R. Tsien,et al.  Ablation of P/Q-type Ca(2+) channel currents, altered synaptic transmission, and progressive ataxia in mice lacking the alpha(1A)-subunit. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[96]  P. Sham,et al.  Association between the alpha(1a) calcium channel gene CACNA1A and idiopathic generalized epilepsy. , 2001, Neurology.

[97]  Hao Wang,et al.  Deletion of the KV1.1 Potassium Channel Causes Epilepsy in Mice , 1998, Neuron.

[98]  J. Newcombe,et al.  Subunit Composition of Kv1 Channels in Human CNS , 1999, Journal of neurochemistry.

[99]  D. A. Brown,et al.  Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone , 1980, Nature.

[100]  A. Koschak,et al.  Three New Familial Hemiplegic Migraine Mutants Affect P/Q-type Ca2+ Channel Kinetics* , 2000, The Journal of Biological Chemistry.

[101]  Michel Baulac,et al.  First genetic evidence of GABAA receptor dysfunction in epilepsy: a mutation in the γ2-subunit gene , 2001, Nature Genetics.

[102]  R. Ophoff,et al.  Episodic ataxia type 2 (EA2) and spinocerebellar ataxia type 6 (SCA6) due to CAG repeat expansion in the CACNA1A gene on chromosome 19p. , 1997, Human molecular genetics.

[103]  Michael Litt,et al.  Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1 , 1994, Nature Genetics.

[104]  C. Fletcher,et al.  Ataxic mouse mutants and molecular mechanisms of absence epilepsy. , 1999, Human molecular genetics.

[105]  F. Ashcroft Ion channels and disease , 1999, Oxford Textbook of Medicine.

[106]  V. Gerzanich,et al.  Mutation Causing Autosomal Dominant Nocturnal Frontal Lobe Epilepsy Alters Ca2+ Permeability, Conductance, and Gating of Human α4β2 Nicotinic Acetylcholine Receptors , 1997, The Journal of Neuroscience.

[107]  L. Nashef,et al.  Association between the α1a calcium channel gene CACNA1A and idiopathic generalized epilepsy , 2001, Neurology.

[108]  P. Schofield,et al.  Identification of intracellular and extracellular domains mediating signal transduction in the inhibitory glycine receptor chloride channel , 1997, The EMBO journal.

[109]  E. Mathews,et al.  Splicing of alpha 1A subunit gene generates phenotypic variants of P- and Q-type calcium channels. , 1999, Nature Neuroscience.

[110]  A. Heils,et al.  A novel SCN1A mutation associated with generalized epilepsy with febrile seizures plus--and prevalence of variants in patients with epilepsy. , 2001, American journal of human genetics.

[111]  F. Bretschneider,et al.  A reduced K+ current due to a novel mutation in KCNQ2 causes neonatal convulsions , 1999, Annals of neurology.

[112]  A. Spauschus,et al.  The molecular biology of the autosomal‐dominant cerebellar ataxias , 2000, Movement disorders : official journal of the Movement Disorder Society.

[113]  P. O’Connell,et al.  Mutational analysis of familial and sporadic hyperekplexia , 1995, Annals of neurology.

[114]  G. Celesia,et al.  Disorders of membrane channels or channelopathies , 2001, Clinical Neurophysiology.

[115]  O. Pongs,et al.  Immunohistochemical Localization of Five Members of the KV1 Channel Subunits: Contrasting Subcellular Locations and Neuron‐specific Co‐localizations in Rat Brain , 1995, The European journal of neuroscience.

[116]  R. Kraus,et al.  Familial hemiplegic migraine mutations change alpha1A Ca2+ channel kinetics. , 1998, The Journal of biological chemistry.

[117]  R. Frants,et al.  Hyperekplexia phenotype due to compound heterozygosity for GLRA1 gene mutations , 1999, Annals of neurology.

[118]  Huda Y. Zoghbi,et al.  Increased Expression of α1A Ca2+Channel Currents Arising from Expanded Trinucleotide Repeats in Spinocerebellar Ataxia Type 6 , 2001, The Journal of Neuroscience.

[119]  Michael G Hanna,et al.  Human epilepsy associated with dysfunction of the brain P/Q-type calcium channel , 2001, The Lancet.

[120]  M. Berger,et al.  Colocalization and coassembly of two human brain M-type potassium channel subunits that are mutated in epilepsy. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[121]  V. Narayanan,et al.  Episodic ataxia and myokymia syndrome: A new mutation of potassium channel gene Kv1.1 , 1996, Annals of neurology.

[122]  Dennis E Bulman,et al.  Familial Hemiplegic Migraine and Episodic Ataxia Type-2 Are Caused by Mutations in the Ca2+ Channel Gene CACNL1A4 , 1996, Cell.

[123]  A. Durr,et al.  Missense CACNA1A mutation causing episodic ataxia type 2. , 2001, Archives of neurology.

[124]  S. Love,et al.  Delayed cerebral edema and fatal coma after minor head trauma: Role of the CACNA1A calcium channel subunit gene and relationship with familial hemiplegic migraine , 2001, Annals of neurology.

[125]  J. Adelman,et al.  Episodic Ataxia Mutations in Kv1.1 Alter Potassium Channel Function by Dominant Negative Effects or Haploinsufficiency , 1998, The Journal of Neuroscience.

[126]  W. Catterall,et al.  From Ionic Currents to Molecular Mechanisms The Structure and Function of Voltage-Gated Sodium Channels , 2000, Neuron.

[127]  J. Adelman,et al.  Characterization of three episodic ataxia mutations in the human Kv1.1 potassium channel , 1998, FEBS letters.

[128]  C. Kubisch,et al.  Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy , 1998, Nature.

[129]  H. Szliwowski,et al.  EEG findings in acetazolamide-responsive hereditary paroxysmal ataxia , 1996, Neurophysiologie Clinique/Clinical Neurophysiology.

[130]  M. Leppert,et al.  Susceptibility Genes in Human Epilepsy , 1999, Seminars in neurology.

[131]  E. Vicaut,et al.  The clinical spectrum of familial hemiplegic migraine associated with mutations in a neuronal calcium channel. , 2001, The New England journal of medicine.

[132]  L. Ptáček,et al.  Channelopathies: ion channel disorders of muscle as a paradigm for paroxysmal disorders of the nervous system , 1997, Neuromuscular Disorders.

[133]  C. Garner,et al.  Ultrastructural localization of Shaker-related potassium channel subunits and synapse-associated protein 90 to septate-like junctions in rat cerebellar Pinceaux. , 1996, Brain research. Molecular brain research.

[134]  Robert C. Griggs,et al.  Hereditary paroxysmal ataxia , 1978, Neurology.

[135]  A. Spauschus,et al.  Clinical, genetic, and expression studies of mutations in the potassium channel gene KCNA1 reveal new phenotypic variability , 2000, Annals of neurology.

[136]  C. Hawkes Familial paroxysmal ataxia: report of a family. , 1992, Journal of neurology, neurosurgery, and psychiatry.

[137]  I. Scheffer,et al.  A missense mutation in the neuronal nicotinic acetylcholine receptor α4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy , 1995, Nature Genetics.

[138]  C Jodice,et al.  Complete loss of P/Q calcium channel activity caused by a CACNA1A missense mutation carried by patients with episodic ataxia type 2. , 2001, American journal of human genetics.

[139]  J. Nutt,et al.  A novel nonsense mutation in CACNA1A causes episodic ataxia and hemiplegia , 1999, Neurology.

[140]  C. Mahaffey,et al.  The mouse stargazer gene encodes a neuronal Ca2+-channel gamma subunit. , 1998, Nature genetics.

[141]  N. Battistini,et al.  A new CACNA1A gene mutation in acetazolamide-responsive familial hemiplegic migraine and ataxia , 1999, Neurology.

[142]  S. Nelson,et al.  Progressive ataxia due to a missense mutation in a calcium-channel gene. , 1997, American journal of human genetics.

[143]  S. Rogers,et al.  A subtype of nicotinic cholinergic receptor in rat brain is composed of alpha 4 and beta 2 subunits and is up-regulated by chronic nicotine treatment. , 1992, Molecular pharmacology.

[144]  D. A. Brown,et al.  Two Types of K+ Channel Subunit, Erg1 and KCNQ2/3, Contribute to the M-Like Current in a Mammalian Neuronal Cell , 1999, The Journal of Neuroscience.