Diameters, centers, and approximating trees of delta-hyperbolicgeodesic spaces and graphs

δ-Hyperbolic metric spaces have been defined by M. Gromov via a simple 4-point condition: for any four points <i>u,v,w,x</i>, the two larger of the sums <i>d</i>(<i>u,v</i>)+<i>d</i>(<i>w,x</i>), <i>d</i>(<i>u,w</i>)+<i>d</i>(<i>v,x</i>), <i>d</i>(<i>u,x</i>)+<i>d</i>(<i>v,w</i>) differ by at most 2δ. Given a finite set <i>S</i> of points of a δ-hyperbolic space, we present simple and fast methods for approximating the diameter of <i>S</i> with an additive error 2δ and computing an approximate radius and center of a smallest enclosing ball for <i>S</i> with an additive error 3δ. These algorithms run in linear time for classical hyperbolic spaces and for δ-hyperbolic graphs and networks. Furthermore, we show that for δ-hyperbolic graphs <i>G</i>=(<i>V,E</i>) with uniformly bounded degrees of vertices, the exact center of <i>S</i> can be computed in linear time <i>O</i>(|E|). We also provide a simple construction of distance approximating trees of δ-hyperbolic graphs <i>G</i> on <i>n</i> vertices with an additive error <i>O</i>(δlog<sub>2</sub> <i>n</i>). This construction has an additive error comparable with that given by Gromov for <i>n</i>-point δ-hyperbolic spaces, but can be implemented in <i>O</i>(|E|) time (instead of <i>O</i>(<i>n</i><sup>2</sup>)). Finally, we establish that several geometrical classes of graphs have bounded hyperbolicity.

[1]  Feodor F. Dragan,et al.  On link diameter of a simple rectilinear polygon , 1993, Comput. Sci. J. Moldova.

[2]  Gabriel Taubin,et al.  Efficient compression of non-manifold polygonal meshes , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[3]  Micha A. Perles,et al.  Staircase Connected Sets , 2007, Discret. Comput. Geom..

[4]  Robert Krauthgamer,et al.  Algorithms on negatively curved spaces , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[5]  Olivier Ly,et al.  Distance Labeling in Hyperbolic Graphs , 2005, ISAAC.

[6]  N. Megiddo Linear-time algorithms for linear programming in R3 and related problems , 1982, FOCS 1982.

[7]  Cyril Gavoille,et al.  Tree-decompositions with bags of small diameter , 2007, Discret. Math..

[8]  Feodor F. Dragan,et al.  Diameter determination on restricted graph families , 1998, Discret. Appl. Math..

[9]  Jean-Daniel Boissonnat,et al.  Computing the Diameter of a Point Set , 2002, Int. J. Comput. Geom. Appl..

[10]  Feodor F. Dragan,et al.  A Note on Distance Approximating Trees in Graphs , 2000, Eur. J. Comb..

[11]  Feodor F. Dragan,et al.  Distance Approximating Trees for Chordal and Dually Chordal Graphs , 1999, J. Algorithms.

[12]  Micha Sharir,et al.  Computing the link center of a simple polygon , 1987, SCG '87.

[13]  David Eppstein,et al.  Squarepants in a tree: sum of subtree clustering and hyperbolic pants decomposition , 2006, SODA '07.

[14]  Yuval Shavitt,et al.  On the curvature of the Internet and its usage for overlay construction and distance estimation , 2004, IEEE INFOCOM 2004.

[15]  Piotr Indyk,et al.  Fast estimation of diameter and shortest paths (without matrix multiplication) , 1996, SODA '96.

[16]  Feodor F. Dragan,et al.  A Linear-Time Algorithm for Finding a Central Vertex of a Chordal Graph , 1994, ESA.

[17]  Feodor F. Dragan,et al.  Center and diameter problems in plane triangulations and quadrangulations , 2002, SODA '02.

[18]  Emo Welzl,et al.  Smallest enclosing disks (balls and ellipsoids) , 1991, New Results and New Trends in Computer Science.

[19]  Hermann A. Maurer,et al.  New Results and New Trends in Computer Science , 1991, Lecture Notes in Computer Science.

[20]  S. L. Hakimi,et al.  Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph , 1964 .

[21]  Hans-Jürgen Bandelt,et al.  1-Hyperbolic Graphs , 2003, SIAM J. Discret. Math..

[22]  Mark de Berg,et al.  On Rectilinear Link Distance , 1991, Comput. Geom..

[23]  Sure Computing Geodesic Furthest Neighbors in Simple Polygons * , 2003 .

[24]  Andrzej Lingas,et al.  AnO(n logn) algorithm for computing the link center of a simple polygon , 1992, Discret. Comput. Geom..

[25]  Dov Dvir,et al.  The absolute center of a network , 2004, Networks.

[26]  J. Świa̧tkowski,et al.  Simplicial nonpositive curvature , 2006 .

[27]  H. Short,et al.  Notes on word hyperbolic groups , 1991 .

[28]  Jacek Świątkowski,et al.  Separating quasi-convex subgroups in 7-systolic groups , 2008 .

[29]  P. Papasoglu,et al.  Strongly geodesically automatic groups are hyperbolic , 1995 .

[30]  Martin E. Dyer,et al.  On a Multidimensional Search Technique and its Application to the Euclidean One-Centre Problem , 1986, SIAM J. Comput..

[31]  A. O. Houcine On hyperbolic groups , 2006 .

[32]  Martin Farber,et al.  On local convexity in graphs , 1987, Discret. Math..

[33]  Boaz Ben-Moshe,et al.  Efficient algorithms for center problems in cactus networks , 2007, Theor. Comput. Sci..

[34]  A. Haefliger,et al.  Group theory from a geometrical viewpoint , 1991 .

[35]  Nimrod Megiddo,et al.  Linear-Time Algorithms for Linear Programming in R^3 and Related Problems , 1982, FOCS.

[36]  V. Chepoi,et al.  Packing and covering δ-hyperbolic spaces by balls ? , 2007 .

[37]  M. Bridson,et al.  Metric Spaces of Non-Positive Curvature , 1999 .

[38]  Kasturi R. Varadarajan,et al.  Geometric Approximation via Coresets , 2007 .

[39]  V. Soltan,et al.  Conditions for invariance of set diameters under d-convexification in a graph , 1983 .

[40]  Victor Chepoi,et al.  Graphs of Some CAT(0) Complexes , 2000, Adv. Appl. Math..

[41]  H. Bandelt,et al.  Metric graph theory and geometry: a survey , 2006 .

[42]  Micha Sharir,et al.  Computing the geodesic center of a simple polygon , 1989, Discret. Comput. Geom..

[43]  Subhash Suri,et al.  Matrix searching with the shortest path metric , 1993, SIAM J. Comput..

[44]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[45]  Bengt J. Nilsson,et al.  An Optimal Algorithm for the Rectilinear Link Center of a Rectilinear Polygon , 1996, Comput. Geom..

[46]  Frédéric Haglund,et al.  Complexes simpliciaux hyperboliques de grande dimension. , 2003 .

[47]  Jacobus H. Koolen,et al.  Hyperbolic Bridged Graphs , 2002, Eur. J. Comb..