Two case studies detailing Bayesian parameter inference for dynamic energy budget models

Abstract Mechanistic representations of individual life-history trajectories are powerful tools for the prediction of organismal growth, reproduction and survival under novel environmental conditions. Dynamic energy budget (DEB) theory provides compact models to describe the acquisition and allocation of energy by organisms over their full life cycle. However, estimating DEB model parameters, and their associated uncertainties and covariances, is not trivial. Bayesian inference provides a coherent way to estimate parameter uncertainty, and propagate it through the model, while also making use of prior information to constrain the parameter space. We outline a Bayesian inference approach for energy budget models and provide two case studies – based on a simplified DEBkiss model, and the standard DEB model – detailing the implementation of such inference procedures using the open-source software package deBInfer. We demonstrate how DEB and DEBkiss parameters can be estimated in a Bayesian framework, but our results also highlight the difficulty of identifying DEB model parameters which serves as a reminder that fitting these models requires statistical caution.

[1]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[2]  Mevin B. Hooten,et al.  Bayesian Models: A Statistical Primer for Ecologists , 2015 .

[3]  S. Engen,et al.  Individual Heterogeneity in Vital Parameters and Demographic Stochasticity , 2008, The American Naturalist.

[4]  S. Kooijman,et al.  What the egg can tell about its hen: Embryonic development on the basis of dynamic energy budgets , 2009, Journal of mathematical biology.

[5]  Leah R. Johnson,et al.  Bayesian inference for bioenergetic models , 2013 .

[6]  W. Link,et al.  Individual Covariation in Life‐History Traits: Seeing the Trees Despite the Forest , 2002, The American Naturalist.

[7]  Vassily Lyutsarev,et al.  Inferred support for disturbance-recovery hypothesis of North Atlantic phytoplankton blooms , 2015 .

[8]  Starrlight Augustine,et al.  The bijection from data to parameter space with the standard DEB model quantifies the supply-demand spectrum. , 2014, Journal of theoretical biology.

[9]  Markus Krauss,et al.  Assessing interindividual variability by Bayesian-PBPK modeling , 2016 .

[10]  Sebastiaan A L M Kooijman,et al.  Making Sense of Ecotoxicological Test Results: Towards Application of Process-based Models , 2006, Ecotoxicology.

[11]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[12]  H. Weimerskirch,et al.  Extreme climate events and individual heterogeneity shape life‐history traits and population dynamics , 2015 .

[13]  James S. Clark,et al.  Models for Ecological Data: An Introduction , 2007 .

[14]  Volker Grimm,et al.  Dynamic Energy Budget theory meets individual‐based modelling: a generic and accessible implementation , 2012 .

[15]  Leah R Johnson,et al.  Parameter inference for an individual based model of chytridiomycosis in frogs. , 2010, Journal of theoretical biology.

[16]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[17]  Bas Kooijman,et al.  Dynamic Energy Budget Theory for Metabolic Organisation , 2005 .

[18]  C. Cobelli,et al.  Parameter and structural identifiability concepts and ambiguities: a critical review and analysis. , 1980, The American journal of physiology.

[19]  Jiqiang Guo,et al.  Stan: A Probabilistic Programming Language. , 2017, Journal of statistical software.

[20]  S. Kooijman,et al.  From molecules to ecosystems through dynamic energy budget models. , 2000 .

[21]  Elke I. Zimmer,et al.  Simplified dynamic energy budget model for analysing ecotoxicity data. , 2012 .

[22]  Tjalling Jager,et al.  DEBkiss or the quest for the simplest generic model of animal life history. , 2013, Journal of theoretical biology.

[23]  M. Gabriela M. Gomes,et al.  A Bayesian Framework for Parameter Estimation in Dynamical Models , 2011, PloS one.

[24]  L. Johnson,et al.  Temperature alters reproductive life history patterns in Batrachochytrium dendrobatidis, a lethal pathogen associated with the global loss of amphibians , 2012, Ecology and evolution.

[25]  Hal Caswell,et al.  Mechanistic description of population dynamics using dynamic energy budget theory incorporated into integral projection models , 2017 .

[26]  Sebastiaan A.L.M. Kooijman,et al.  Waste to hurry: Dynamic energy budgets explain the need of wasting to fully exploit blooming resources. , 2013 .

[27]  Clifford H. Thurber,et al.  Parameter estimation and inverse problems , 2005 .

[28]  Elke I. Zimmer,et al.  Juvenile food limitation in standardized tests: a warning to ecotoxicologists , 2012, Ecotoxicology.

[29]  Karline Soetaert,et al.  Solving Differential Equations in R: Package deSolve , 2010 .

[30]  Gonçalo M. Marques,et al.  The AmP project: Comparing species on the basis of dynamic energy budget parameters , 2018, PLoS Comput. Biol..

[31]  M. Barenco,et al.  Fitting ordinary differential equations to short time course data , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[32]  Tiago Domingos,et al.  Physics of metabolic organization. , 2017, Physics of life reviews.

[33]  Karline Soetaert,et al.  A Practical Guide to Ecological Modelling: Using R as a Simulation Platform , 2008 .

[34]  K. Butt,et al.  Reproduction and growth of three deep-burrowing earthworms (Lumbricidae) in laboratory culture in order to assess production for soil restoration , 1993, Biology and Fertility of Soils.

[35]  Karline Soetaert,et al.  Solving Differential Equations in R , 2012 .

[36]  Marie Laure Delignette-Muller,et al.  A Bayesian approach to analyzing ecotoxicological data. , 2008, Environmental science & technology.

[37]  A. Gelman,et al.  Physiological Pharmacokinetic Analysis Using Population Modeling and Informative Prior Distributions , 1996 .

[38]  Sandrine Charles,et al.  Integrating the lethal and sublethal effects of toxic compounds into the population dynamics of Daphnia magna: A combination of the DEBtox and matrix population models , 2007 .

[39]  Philipp H. Boersch-Supan,et al.  deBInfer: Bayesian inference for dynamical models of biological systems in R , 2016, Methods in Ecology and Evolution.

[40]  Sebastiaan A.L.M. Kooijman,et al.  The “covariation method” for estimating the parameters of the standard Dynamic Energy Budget model I: Philosophy and approach , 2011 .

[41]  Marie Laure Delignette-Muller,et al.  Statistical cautions when estimating DEBtox parameters. , 2008, Journal of theoretical biology.

[42]  Andrew Gelman,et al.  General methods for monitoring convergence of iterative simulations , 1998 .

[43]  Michael R Kearney,et al.  Reconciling theories for metabolic scaling. , 2014, The Journal of animal ecology.