Expression and Evolution of Short Wavelength Sensitive Opsins in Colugos: A Nocturnal Lineage That Informs Debate on Primate Origins

[1]  N. Dominy,et al.  Inferred L/M cone opsin polymorphism of ancestral tarsiers sheds dim light on the origin of anthropoid primates , 2013, Proceedings of the Royal Society B: Biological Sciences.

[2]  Deborah A. Bolnick,et al.  Nocturnal light environments influence color vision and signatures of selection on the OPN1SW opsin gene in nocturnal lemurs. , 2013, Molecular biology and evolution.

[3]  Andrea L. Cirranello,et al.  The Placental Mammal Ancestor and the Post–K-Pg Radiation of Placentals , 2013, Science.

[4]  G. H. Jacobs Losses of functional opsin genes, short-wavelength cone photopigments, and color vision—A significant trend in the evolution of mammalian vision , 2013, Visual Neuroscience.

[5]  X. Giam,et al.  Occurrence of the Sunda colugo ( Galeopterus variegatus ) in the tropical forests of Singapore: A Bayesian approach , 2013 .

[6]  D. Hunt,et al.  Molecular ecology and adaptation of visual photopigments in craniates , 2012, Molecular ecology.

[7]  N. Dominy,et al.  Why Aye‐Ayes See Blue , 2012, American journal of primatology.

[8]  Livia S. Carvalho,et al.  Spectral tuning and evolution of primate short-wavelength-sensitive visual pigments , 2012, Proceedings of the Royal Society B: Biological Sciences.

[9]  T. J. Robinson,et al.  Impacts of the Cretaceous Terrestrial Revolution and KPg Extinction on Mammal Diversification , 2011, Science.

[10]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[11]  L. Olson,et al.  Molecular phylogeny of treeshrews (Mammalia: Scandentia) and the timescale of diversification in Southeast Asia. , 2011, Molecular phylogenetics and evolution.

[12]  Thomas Libby,et al.  Gliding saves time but not energy in Malayan colugos , 2011, Journal of Experimental Biology.

[13]  A. Spence,et al.  Sex differences in the locomotor ecology of a gliding mammal, the Malayan colugo (Galeopterus variegatus) , 2011 .

[14]  Jay Neitz,et al.  The genetics of normal and defective color vision , 2011, Vision Research.

[15]  S. O’Brien,et al.  A Molecular Phylogeny of Living Primates , 2011, PLoS genetics.

[16]  W. L. Davies Adaptive Gene Loss in Vertebrates: Photosensitivity as a Model Case , 2011 .

[17]  L. Peichl,et al.  Retinal photoreceptors of two subterranean tuco‐tuco species (Rodentia, Ctenomys): Morphology, topography, and spectral sensitivity , 2010, The Journal of comparative neurology.

[18]  E. Garcia-Rivera,et al.  Opsin co-expression in Limulus photoreceptors: differential regulation by light and a circadian clock , 2010, Journal of Experimental Biology.

[19]  Luke J. Matthews,et al.  The 10kTrees website: A new online resource for primate phylogeny , 2010 .

[20]  Joseph K. Pickrell,et al.  A rod cell marker of nocturnal ancestry. , 2010, Journal of human evolution.

[21]  P. Ng,et al.  POPULATION ASSESSMENT METHODS FOR THE SUNDA COLUGO GALEOPTERUS VARIEGATUS (MAMMALIA: DERMOPTERA) IN TROPICAL FORESTS AND THEIR VIABILITY IN SINGAPORE , 2010 .

[22]  Livia S. Carvalho,et al.  Evolution and spectral tuning of visual pigments in birds and mammals , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[23]  S. Halford,et al.  The evolution of irradiance detection: melanopsin and the non-visual opsins , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[24]  Josef Ammermüller,et al.  Bat Eyes Have Ultraviolet-Sensitive Cone Photoreceptors , 2009, PloS one.

[25]  Shuyi Zhang,et al.  Evolution of opsin genes reveals a functional role of vision in the echolocating little brown bat (Myotis lucifugus) , 2009 .

[26]  E. Teeling,et al.  The evolution of color vision in nocturnal mammals , 2009, Proceedings of the National Academy of Sciences.

[27]  Thomas Cremer,et al.  Nuclear Architecture of Rod Photoreceptor Cells Adapts to Vision in Mammalian Evolution , 2009, Cell.

[28]  R. Nielsen,et al.  Synonymous and nonsynonymous rate variation in nuclear genes of mammals , 1998, Journal of Molecular Evolution.

[29]  M. Abdullah,et al.  Foraging Ecology of the Sunda Colugo (Galeopterus variegatus) in Bako National Park, Sarawak, Malaysia. , 2009 .

[30]  W. Murphy,et al.  Evidence for multiple species of Sunda colugo , 2008, Current Biology.

[31]  G. H. Jacobs Primate color vision: A comparative perspective , 2008, Visual Neuroscience.

[32]  Andrew J Spence,et al.  Take-off and landing kinetics of a free-ranging gliding mammal, the Malayan colugo (Galeopterus variegatus) , 2008, Proceedings of the Royal Society B: Biological Sciences.

[33]  R. Martin Colugos: obscure mammals glide into the evolutionary limelight , 2008, Journal of biology.

[34]  J. Munshi‐South Colugo: The Flying Lemur of South-East Asia , 2008 .

[35]  L. Peichl,et al.  Cone photoreceptors and potential UV vision in a subterranean insectivore, the European mole. , 2008, Journal of vision.

[36]  T. Ruf,et al.  Retinal cone topography of artiodactyl mammals: Influence of body height and habitat , 2008, The Journal of comparative neurology.

[37]  C. Grant,et al.  Metabolic reconfiguration is a regulated response to oxidative stress , 2008, Journal of biology.

[38]  A. Oskooi Molecular Evolution and Phylogenetics , 2008 .

[39]  M. Ravosa,et al.  PRIMATE ORIGINS: Adaptations and evolution , 2007 .

[40]  Tom H. Pringle,et al.  Molecular and Genomic Data Identify the Closest Living Relative of Primates , 2007, Science.

[41]  G. Perry,et al.  Signatures of functional constraint at aye-aye opsin genes: the potential of adaptive color vision in a nocturnal primate. , 2007, Molecular biology and evolution.

[42]  Adi Doron-Faigenboim,et al.  Selecton 2007: advanced models for detecting positive and purifying selection using a Bayesian inference approach , 2007, Nucleic Acids Res..

[43]  G. H. Jacobs,et al.  Contributions of the mouse UV photopigment to the ERG and to vision , 2007, Documenta Ophthalmologica.

[44]  Livia S. Carvalho,et al.  Spectral Tuning of Shortwave‐sensitive Visual Pigments in Vertebrates † , 2007, Photochemistry and photobiology.

[45]  C. Ross,et al.  Evolution of eye size and shape in primates. , 2007, Journal of human evolution.

[46]  D. Boyer,et al.  New Paleocene skeletons and the relationship of plesiadapiforms to crown-clade primates , 2007, Proceedings of the National Academy of Sciences.

[47]  P. Tafforeau,et al.  Cynocephalid dermopterans from the Palaeogene of South Asia (Thailand, Myanmar and Pakistan): systematic, evolutionary and palaeobiogeographic implications , 2006 .

[48]  Xijun Ni,et al.  Cranial remains of an Eocene tarsier. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[49]  R. Martin,et al.  The Evolutionary and Ecological Context of Primate Vision , 2006 .

[50]  E. Kirk,et al.  Eye Morphology in Cathemeral Lemurids and Other Mammals , 2006, Folia Primatologica.

[51]  M. Dagosto,et al.  Primate Origins and Evolution. A phylogenetic reconstruction , 1991, International Journal of Primatology.

[52]  L. Peichl Diversity of mammalian photoreceptor properties: adaptations to habitat and lifestyle? , 2005, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[53]  Wen-Hsiung Li,et al.  Evidence from opsin genes rejects nocturnality in ancestral primates. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Francisco Bozinovic,et al.  Eye and vision in the subterranean rodent cururo (Spalacopus cyanus, octodontidae) , 2005, The Journal of comparative neurology.

[55]  M. Cartmill,et al.  New views on primate origins , 2005 .

[56]  U. Wolfrum,et al.  Divergent Distribution in Vascular and Avascular Mammalian Retinae Links Neuroglobin to Cellular Respiration* , 2005, Journal of Biological Chemistry.

[57]  Leo Peichl,et al.  Cone Photoreceptor Diversity in the Retinas of Fruit Bats (Megachiroptera) , 2005, Brain, Behavior and Evolution.

[58]  L. Peichl,et al.  Retinal Cone Photoreceptors in Microchiropteran Bats , 2005 .

[59]  Á. Szél,et al.  Photopigment coexpression in mammals: comparative and developmental aspects. , 2005, Histology and histopathology.

[60]  G. Agoramoorthy,et al.  Population, Diet and Conservation of Malayan Flying Lemurs in Altered and Fragmented Habitats in Singapore , 2006, Biodiversity & Conservation.

[61]  Heinz Wässle,et al.  Parallel processing in the mammalian retina , 2004, Nature Reviews Neuroscience.

[62]  J. Bowmaker,et al.  Divergent mechanisms for the tuning of shortwave sensitive visual pigments in vertebrates , 2004, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[63]  J. Bowmaker,et al.  A novel amino acid substitution is responsible for spectral tuning in a rodent violet-sensitive visual pigment. , 2004, Biochemistry.

[64]  G. H. Jacobs,et al.  Influence of cone pigment coexpression on spectral sensitivity and color vision in the mouse , 2004, Vision Research.

[65]  M. Ravosa,et al.  Euprimate origins: the eyes have it. , 2004, Journal of human evolution.

[66]  D. Samuelson,et al.  Comparative morphology of the tapetum lucidum (among selected species). , 2004, Veterinary ophthalmology.

[67]  Jeffrey P. Mower,et al.  Molecular evolution of bat color vision genes. , 2003, Molecular biology and evolution.

[68]  J. Rohen Zur Histologie des Tarsiusauges , 1966, Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie.

[69]  M. Richmond,et al.  Rate of digesta passage in the Philippine flying lemur, Cynocephalus volans , 2004, Journal of Comparative Physiology □ B.

[70]  S. Kawamura,et al.  Ancestral Loss of Short Wave-Sensitive Cone Visual Pigment in Lorisiform Prosimians, Contrasting with Its Strict Conservation in Other Prosimians , 2004, Journal of Molecular Evolution.

[71]  J. Kaas,et al.  The Primate visual system , 2003 .

[72]  D. Stavenga,et al.  Coexpression of Two Visual Pigments in a Photoreceptor Causes an Abnormally Broad Spectral Sensitivity in the Eye of the Butterfly Papilio xuthus , 2003, The Journal of Neuroscience.

[73]  J. Bowmaker,et al.  The molecular mechanism for the spectral shifts between vertebrate ultraviolet- and violet-sensitive cone visual pigments. , 2002, The Biochemical journal.

[74]  Á. Szél,et al.  Visual pigment coexpression in all cones of two rodents, the Siberian hamster, and the pouched mouse. , 2002, Investigative ophthalmology & visual science.

[75]  J. Bowmaker,et al.  Visual pigment coexpression in Guinea pig cones: a microspectrophotometric study. , 2002, Investigative ophthalmology & visual science.

[76]  D. Oprian,et al.  Spectral tuning in the mammalian short-wavelength sensitive cone pigments. , 2002, Biochemistry.

[77]  P. Ahnelt,et al.  A mouse-like retinal cone phenotype in the Syrian hamster: S opsin coexpressed with M opsin in a common cone photoreceptor , 2002, Brain Research.

[78]  Á. Szél,et al.  Short and mid‐wavelength cone distribution in a nocturnal Strepsirrhine primate (Microcebus murinus) , 2001, The Journal of comparative neurology.

[79]  S. Yokoyama,et al.  Molecular genetics and the evolution of ultraviolet vision in vertebrates , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[80]  S. Yokoyama,et al.  The molecular genetics and evolution of red and green color vision in vertebrates. , 2001, Genetics.

[81]  Dao-Yi Yu,et al.  Oxygen Distribution and Consumption within the Retina in Vascularised and Avascular Retinas and in Animal Models of Retinal Disease , 2001, Progress in Retinal and Eye Research.

[82]  C. Ross,et al.  Evolution of activity patterns and chromatic vision in primates: morphometrics, genetics and cladistics. , 2001, Journal of human evolution.

[83]  J. Scheibe,et al.  Biology of gliding mammals , 2000 .

[84]  Helga Kolb,et al.  The mammalian photoreceptor mosaic-adaptive design , 2000, Progress in Retinal and Eye Research.

[85]  A. Hendrickson,et al.  Nocturnal tarsier retina has both short and long/medium‐wavelength cones in an unusual topography , 2000, The Journal of comparative neurology.

[86]  M. Antoch,et al.  The Murine Cone Photoreceptor A Single Cone Type Expresses Both S and M Opsins with Retinal Spatial Patterning , 2000, Neuron.

[87]  G. H. Jacobs,et al.  Cone receptor variations and their functional consequences in two species of hamster , 1999, Visual Neuroscience.

[88]  M. Richmond,et al.  Foraging Ecology of the Philippine Flying Lemur (Cynocephalus volans) , 1998 .

[89]  G. H. Jacobs,et al.  Photopigment basis for dichromatic color vision in cows, goats, and sheep , 1998, Visual Neuroscience.

[90]  S. Kawamura,et al.  Regeneration of ultraviolet pigments of vertebrates , 1998, FEBS letters.

[91]  T Roenneberg,et al.  Twilight Times: Light and the Circadian System , 1997, Photochemistry and photobiology.

[92]  Ziheng Yang,et al.  PAML: a program package for phylogenetic analysis by maximum likelihood , 1997, Comput. Appl. Biosci..

[93]  Á. Szél,et al.  Distribution of cone photoreceptors in the mammalian retina , 1996, Microscopy research and technique.

[94]  G. H. Jacobs,et al.  ERG Measurements of the Spectral Sensitivity of Common Chimpanzee (Pan troglodytes) , 1996, Vision Research.

[95]  G. H. Jacobs,et al.  Mutations in S-cone pigment genes and the absence of colour vision in two species of nocturnal primate , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[96]  E. V. Famiglietti,et al.  Regional topography of rod and immunocytochemically characterized “blue” and “green” cone photoreceptors in rabbit retina , 1995, Visual Neuroscience.

[97]  Á. Szél,et al.  Two different visual pigments in one retinal cone cell , 1994, Neuron.

[98]  D. Oprian,et al.  Molecular determinants of human red/green color discrimination , 1994, Neuron.

[99]  B Ehinger,et al.  Complementary cone fields of the rabbit retina. , 1994, Investigative ophthalmology & visual science.

[100]  G. H. Jacobs THE DISTRIBUTION AND NATURE OF COLOUR VISION AMONG THE MAMMALS , 1993, Biological reviews of the Cambridge Philosophical Society.

[101]  K. Beard Origin and Evolution of Gliding in Early Cenozoic Dermoptera (Mammalia, Primatomorpha) , 1993 .

[102]  Ross D. E. MacPhee,et al.  Primates and Their Relatives in Phylogenetic Perspective , 1993, Advances in Primatology.

[103]  L. Peichl Morphological types of ganglion cells in the dog and wolf retina , 1992, The Journal of comparative neurology.

[104]  Donald J. Zack,et al.  A locus control region adjacent to the human red and green visual pigment genes , 1992, Neuron.

[105]  William R. Taylor,et al.  The rapid generation of mutation data matrices from protein sequences , 1992, Comput. Appl. Biosci..

[106]  Jeremy Nathans,et al.  Absorption spectra of human cone pigments , 1992, Nature.

[107]  E. Buffetaut,et al.  First fossil flying lemur: a dermopteran from the Late Eocene of Thailand , 1992 .

[108]  W. L. Weller,et al.  How thick should a retina be? A comparative study of mammalian species with and without intraretinal vasculature , 1991, Vision Research.

[109]  H. Young,et al.  Rod‐signal interneurons in the rabbit retina: 1. Rod bipolar cells , 1991, The Journal of comparative neurology.

[110]  G H Jacobs,et al.  Spectral tuning of pigments underlying red-green color vision. , 1991, Science.

[111]  P. Rakić,et al.  Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[112]  L. Peichl,et al.  Topography of cones and rods in the tree shrew retina , 1989, The Journal of comparative neurology.

[113]  H. Inagaki,et al.  Grooved Lower Incisors in Flying Lemurs , 1988 .

[114]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[115]  G. H. Jacobs,et al.  Spectral mechanisms and color vision in the tree shrew (Tupaia belangeri) , 1986, Vision Research.

[116]  R. Molday,et al.  Differential immunogold-dextran labeling of bovine and frog rod and cone cells using monoclonal antibodies against bovine rhodopsin. , 1986, Experimental eye research.

[117]  J. Mollon,et al.  Human visual pigments: microspectrophotometric results from the eyes of seven persons , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[118]  J. Chase,et al.  The evolution of retinal vascularization in mammals. A comparison of vascular and avascular retinae. , 1982, Ophthalmology.

[119]  A. Walker,et al.  Function of the mandibular tooth comb in living and extinct mammals , 1981, Nature.

[120]  George Gaylord Simpson,et al.  The Principles of Classification and a Classification of Mammals. , 1945 .

[121]  G. L. Walls,et al.  The Vertebrate Eye and Its Adaptive Radiation , 1943 .

[122]  G. Johnson Contributions to the comparative anatomy of the Mammalian eye, chiefly based on Ophthalmoscopic examination , 2015, Proceedings of the Royal Society of London.