Functional Implications of Glutamatergic Projections to the Ventral Tegmental Area

Glutamatergic afferents of the ventral tegmental area (VTA) play an important role in the functioning of the VTA and are involved in the pathophysiology of drug addiction. It has recently been demonstrated that the VTA is densely innervated by glutamatergic axons and that glutamatergic neurons projecting to the VTA are situated in almost all structures that project there. While the projection from the prefrontal cortex is essentially entirely glutamatergic, subcortical glutamatergic neurons innervating the VTA intermingle with non-glutamatergic, most likely GABAergic and/or peptidergic VTA-projecting neurons. The first part of this review focuses on the origins and putative functional implications of various glutamatergic projections to the VTA. In the second part we consider how different neuropeptides via different mechanisms modulate glutamatergic actions in the VTA. We conclude by developing a model of how the glutamatergic afferents might together contribute to the functions of the VTA.

[1]  G Chouvet,et al.  Tonic Activation of NMDA Receptors Causes Spontaneous Burst Discharge of Rat Midbrain Dopamine Neurons In Vivo , 1993, The European journal of neuroscience.

[2]  R. Farkas,et al.  Single-channel properties of the nonselective cation conductance induced by neurotensin in dopaminergic neurons. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[3]  S. Sesack,et al.  Lateral habenula projections to dopamine and GABA neurons in the rat ventral tegmental area , 2009, The European journal of neuroscience.

[4]  R. Wise Dopamine, learning and motivation , 2004, Nature Reviews Neuroscience.

[5]  K. Wilcox,et al.  Stimulation of the lateral habenula inhibits dopamine-containing neurons in the substantia nigra and ventral tegmental area of the rat , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  A. Phillips,et al.  Differential effects of dopamine receptor antagonists on the sexual behavior of male rats , 2004, Psychopharmacology.

[7]  S. Takamori VGLUTs: ‘Exciting’ times for glutamatergic research? , 2006, Neuroscience Research.

[8]  S. Sesack,et al.  Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area , 1992, The Journal of comparative neurology.

[9]  B. Giros,et al.  A Third Vesicular Glutamate Transporter Expressed by Cholinergic and Serotoninergic Neurons , 2002, The Journal of Neuroscience.

[10]  Anthony A Grace,et al.  The Hippocampus Modulates Dopamine Neuron Responsivity by Regulating the Intensity of Phasic Neuron Activation , 2006, Neuropsychopharmacology.

[11]  Xiao-Bing Gao,et al.  Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. , 2006, The Journal of clinical investigation.

[12]  P. Groves,et al.  Burst firing induced in midbrain dopamine neurons by stimulation of the medial prefrontal and anterior cingulate cortices , 1988, Brain Research.

[13]  R. Malenka,et al.  Synaptic plasticity and addiction , 2007, Nature Reviews Neuroscience.

[14]  P. Kalivas,et al.  The role of mesoaccumbens-pallidal circuitry in novelty-induced behavioral activation , 1995, Neuroscience.

[15]  A. Grace,et al.  Acute and chronic haloperidol treatment: comparison of effects on nigral dopaminergic cell activity. , 1978, Life sciences.

[16]  Fan Wang,et al.  Upregulation of Ionotropic Glutamate Receptor Subunits within Specific Mesocorticolimbic Regions during Chronic Nicotine Self-Administration , 2007, Neuropsychopharmacology.

[17]  M. Wolf,et al.  Amphetamine Increases Glutamate Efflux in the Rat Ventral Tegmental Area by a Mechanism Involving Glutamate Transporters and Reactive Oxygen Species , 2000, Journal of neurochemistry.

[18]  K. Franklin,et al.  The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine , 2005, Psychopharmacology.

[19]  R. Wise,et al.  Cocaine Experience Establishes Control of Midbrain Glutamate and Dopamine by Corticotropin-Releasing Factor: A Role in Stress-Induced Relapse to Drug Seeking , 2005, The Journal of Neuroscience.

[20]  R. Kalb,et al.  Sensitization to morphine induced by viral-mediated gene transfer. , 1997, Science.

[21]  D. Copenhagen,et al.  The identification of vesicular glutamate transporter 3 suggests novel modes of signaling by glutamate , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[22]  O. Phillipson A Golgi study of the ventral tegmental area of Tsai and interfascicular nucleus in the rat , 1979, The Journal of comparative neurology.

[23]  B. Renaud,et al.  Endogenous Neurotensin in the Ventral Tegmental Area Contributes to Amphetamine Behavioral Sensitization , 2005, Neuropsychopharmacology.

[24]  A. Grace,et al.  Glutamatergic Afferents from the Hippocampus to the Nucleus Accumbens Regulate Activity of Ventral Tegmental Area Dopamine Neurons , 2001, The Journal of Neuroscience.

[25]  S. M. Robinson,et al.  Extent and Direction of Ghrelin Transport Across the Blood-Brain Barrier Is Determined by Its Unique Primary Structure , 2002, Journal of Pharmacology and Experimental Therapeutics.

[26]  Christian Rosenmund,et al.  Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons , 2000, Nature.

[27]  A. Deutch,et al.  Anatomical substrates of orexin–dopamine interactions: lateral hypothalamic projections to the ventral tegmental area , 2002, Neuroscience.

[28]  E. Stein,et al.  Blockade of ionotropic glutamatergic transmission in the ventral tegmental area reduces heroin reinforcement in rat , 2002, Psychopharmacology.

[29]  S. Sesack,et al.  Cholinergic axons in the rat ventral tegmental area synapse preferentially onto mesoaccumbens dopamine neurons , 2006, The Journal of comparative neurology.

[30]  C. Saper,et al.  Pedunculopontine tegmental nucleus of the rat: Cytoarchitecture, cytochemistry, and some extrapyramidal connections of the mesopontine tegmentum , 1987, The Journal of comparative neurology.

[31]  K. Chergui,et al.  Burst firing of mesencephalic dopamine neurons is inhibited by somatodendritic application of kynurenate. , 1991, Acta physiologica Scandinavica.

[32]  K. Fuxe,et al.  EVIDENCE FOR THE EXISTENCE OF MONOAMINE-CONTAINING NEURONS IN THE CENTRAL NERVOUS SYSTEM. I. DEMONSTRATION OF MONOAMINES IN THE CELL BODIES OF BRAIN STEM NEURONS. , 1964, Acta physiologica Scandinavica. Supplementum.

[33]  D. V. von Cramon,et al.  Error Monitoring Using External Feedback: Specific Roles of the Habenular Complex, the Reward System, and the Cingulate Motor Area Revealed by Functional Magnetic Resonance Imaging , 2003, The Journal of Neuroscience.

[34]  S. Haber,et al.  Dopamine Neurons Make Glutamatergic Synapses In Vitro , 1998, The Journal of Neuroscience.

[35]  C. Lüscher,et al.  Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression , 2006, Nature Neuroscience.

[36]  R. Wise,et al.  Novelty‐evoked elevations of nucleus accumbens dopamine: dependence on impulse flow from the ventral subiculum and glutamatergic neurotransmission in the ventral tegmental area , 2001, The European journal of neuroscience.

[37]  S. Grant,et al.  Glutamate-like immunoreactivity is present within cholinergic neurons of the laterodorsal tegmental and pedunculopontine nuclei. , 1991, Advances in experimental medicine and biology.

[38]  S. Sesack,et al.  Orexin axons in the rat ventral tegmental area synapse infrequently onto dopamine and γ‐aminobutyric acid neurons , 2007, The Journal of comparative neurology.

[39]  R. Wise,et al.  Effects of naloxone and pimozide on initiation and maintenance measures of free feeding , 1986, Brain Research.

[40]  P. Rompré,et al.  Role of Calcium in Neurotensin-Evoked Enhancement in Firing in Mesencephalic Dopamine Neurons , 2004, The Journal of Neuroscience.

[41]  S. Sesack,et al.  Laterodorsal tegmental projections to identified cell populations in the rat ventral tegmental area , 2005, The Journal of comparative neurology.

[42]  S. Ikemoto Involvement of the Olfactory Tubercle in Cocaine Reward: Intracranial Self-Administration Studies , 2003, The Journal of Neuroscience.

[43]  D. S. Zahm,et al.  The patterns of afferent innervation of the core and shell in the “Accumbens” part of the rat ventral striatum: Immunohistochemical detection of retrogradely transported fluoro‐gold , 1993, The Journal of comparative neurology.

[44]  C. Blaha,et al.  Laterodorsal tegmental stimulation elicits dopamine efflux in the rat nucleus accumbens by activation of acetylcholine and glutamate receptors in the ventral tegmental area , 2000, The European journal of neuroscience.

[45]  R. Fremeau,et al.  Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. , 2000, Science.

[46]  R. North,et al.  Opioids excite dopamine neurons by hyperpolarization of local interneurons , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[47]  A. Grace,et al.  The control of firing pattern in nigral dopamine neurons: burst firing , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  A. Charara,et al.  Glutamatergic inputs from the pedunculopontine nucleus to midbrain dopaminergic neurons in primates: Phaseolus vulgaris‐leucoagglutinin anterograde labeling combined with postembedding glutamate and GABA immunohistochemistry , 1996, The Journal of comparative neurology.

[49]  P. Shepard,et al.  Lateral Habenula Stimulation Inhibits Rat Midbrain Dopamine Neurons through a GABAA Receptor-Mediated Mechanism , 2007, The Journal of Neuroscience.

[50]  R. Fremeau,et al.  VGLUTs define subsets of excitatory neurons and suggest novel roles for glutamate , 2004, Trends in Neurosciences.

[51]  M. Marinelli,et al.  Prominent Activation of Brainstem and Pallidal Afferents of the Ventral Tegmental Area by Cocaine , 2008, Neuropsychopharmacology.

[52]  F. J. White,et al.  Synaptic regulation of mesocorticolimbic dopamine neurons. , 1996, Annual review of neuroscience.

[53]  A. Beaudet,et al.  Correspondence between high affinity 125I‐neurotensin binding sites and dopaminergic neurons in the rat substantia nigra and ventral tegmental area: A combined radioautographic and immunohistochemical light microscopic study , 1989, The Journal of comparative neurology.

[54]  G. Rebec,et al.  Ionotropic Glutamate Receptors in the Ventral Tegmental Area Regulate Cocaine-Seeking Behavior in Rats , 2005, Neuropsychopharmacology.

[55]  R. Quirion,et al.  Comparative localization of neurotensin receptors on nigrostriatal and mesolimbic dopaminergic terminals , 1985, Brain Research.

[56]  R. Stornetta,et al.  Hypothalamic orexin (hypocretin) neurons express vesicular glutamate transporters VGLUT1 or VGLUT2 , 2003, The Journal of comparative neurology.

[57]  S. Geisler,et al.  Neurotensin afferents of the ventral tegmental area in the rat: [1] re‐examination of their origins and [2] responses to acute psychostimulant and antipsychotic drug administration , 2006, The European journal of neuroscience.

[58]  F. J. White,et al.  Repeated administration of cocaine or amphetamine alters neuronal responses to glutamate in the mesoaccumbens dopamine system. , 1995, The Journal of pharmacology and experimental therapeutics.

[59]  R. Wise,et al.  Opiate receptor subtypes associated with the brain mechanisms of feeding and reward. , 1986, NIDA research monograph.

[60]  M. Schäfer,et al.  Identification of the Differentiation-Associated Na+/PI Transporter as a Novel Vesicular Glutamate Transporter Expressed in a Distinct Set of Glutamatergic Synapses , 2002, The Journal of Neuroscience.

[61]  A. Bonci,et al.  Cocaine Enhances NMDA Receptor-Mediated Currents in Ventral Tegmental Area Cells via Dopamine D5 Receptor-Dependent Redistribution of NMDA Receptors , 2006, The Journal of Neuroscience.

[62]  F. Gonon,et al.  Prefrontal cortex regulates burst firing and transmitter release in rat mesolimbic dopamine neurons studied in vivo , 1993, Neuroscience Letters.

[63]  J. Kauer Learning mechanisms in addiction: synaptic plasticity in the ventral tegmental area as a result of exposure to drugs of abuse. , 2004, Annual review of physiology.

[64]  O. Phillipson Afferent projections to the ventral tegmental area of Tsai and interfascicular nucleus: A horseradish peroxidase study in the rat , 1979, The Journal of comparative neurology.

[65]  S. Geisler,et al.  Afferents of the ventral tegmental area in the rat‐anatomical substratum for integrative functions , 2005, The Journal of comparative neurology.

[66]  Wei-Xing Shi,et al.  Functional Coupling between the Prefrontal Cortex and Dopamine Neurons in the Ventral Tegmental Area , 2007, The Journal of Neuroscience.

[67]  H. Groenewegen,et al.  Organization of the efferent projections of the nucleus accumbens to pallidal, hypothalamic, and mesencephalic structures: A tracing and immunohistochemical study in the cat , 1984, The Journal of comparative neurology.

[68]  B. Giros,et al.  The Existence of a Second Vesicular Glutamate Transporter Specifies Subpopulations of Glutamatergic Neurons , 2001, The Journal of Neuroscience.

[69]  P. Kalivas Neurotransmitter regulation of dopamine neurons in the ventral tegmental area , 1993, Brain Research Reviews.

[70]  M. Poo,et al.  Repeated cocaine exposure in vivo facilitates LTP induction in midbrain dopamine neurons , 2005, Nature.

[71]  O. Hikosaka,et al.  Lateral habenula as a source of negative reward signals in dopamine neurons , 2007, Nature.

[72]  D. S. Zahm,et al.  Specificity in the efferent projections of the nucleus accumbens in the rat: Comparison of the rostral pole projection patterns with those of the core and shell , 1993, The Journal of comparative neurology.

[73]  P. Malherbe,et al.  Molecular cloning and functional characterization of human vesicular glutamate transporter 3 , 2002, EMBO reports.

[74]  G. Aston-Jones,et al.  Potent Regulation of Midbrain Dopamine Neurons by the Bed Nucleus of the Stria Terminalis , 2001, The Journal of Neuroscience.

[75]  A. Phillips,et al.  Reinforcing effects of morphine microinjection into the ventral tegmental area , 1980, Pharmacology Biochemistry and Behavior.

[76]  R. Malenka,et al.  Acute and Chronic Cocaine-Induced Potentiation of Synaptic Strength in the Ventral Tegmental Area: Electrophysiological and Behavioral Correlates in Individual Rats , 2004, The Journal of Neuroscience.

[77]  M. Wolf,et al.  The laterodorsal tegmentum contributes to behavioral sensitization to amphetamine , 2007, Neuroscience.

[78]  B. K. Hartman,et al.  Distribution of pontomesencephalic cholinergic neurons projecting to substantia nigra differs significantly from those projecting to ventral tegmental area , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[79]  R. Wise,et al.  Neuroleptic-induced "anhedonia" in rats: pimozide blocks reward quality of food. , 1978, Science.

[80]  R. Farkas,et al.  Neurotensin and dopamine D2 activation oppositely regulate the same K+ conductance in rat midbrain dopaminergic neurons , 1997, Neuroscience Letters.

[81]  R. North,et al.  Neurotensin excitation of rat ventral tegmental neurones. , 1994, The Journal of physiology.

[82]  R. Wightman,et al.  Subsecond dopamine release promotes cocaine seeking , 2003, Nature.

[83]  K. Chergui,et al.  Nonlinear relationship between impulse flow, dopamine release and dopamine elimination in the rat brainin vivo , 1994, Neuroscience.

[84]  D. S. Zahm,et al.  Brain neurotensin, psychostimulants, and stress – emphasis on neuroanatomical substrates , 2006, Peptides.

[85]  F. Fujiyama,et al.  Immunohistochemical localization of candidates for vesicular glutamate transporters in the rat brain , 2002, The Journal of comparative neurology.

[86]  J. Kauer,et al.  Rapid Synaptic Plasticity of Glutamatergic Synapses on Dopamine Neurons in the Ventral Tegmental Area in Response to Acute Amphetamine Injection , 2004, Neuropsychopharmacology.

[87]  J. Storm-Mathisen,et al.  The Expression of Vesicular Glutamate Transporters Defines Two Classes of Excitatory Synapse , 2001, Neuron.

[88]  E. Nestler,et al.  Biochemical actions of chronic ethanol exposure in the mesolimbic dopamine system , 1995, Synapse.

[89]  R. Wise,et al.  Rewarding Effects of the Cholinergic Agents Carbachol and Neostigmine in the Posterior Ventral Tegmental Area , 2002, The Journal of Neuroscience.

[90]  R. Wise,et al.  Stress-induced relapse to cocaine seeking: roles for the CRF2 receptor and CRF-binding protein in the ventral tegmental area of the rat , 2007, Psychopharmacology.

[91]  R. Farkas,et al.  Properties of a slow nonselective cation conductance modulated by neurotensin and other neurotransmitters in midbrain dopaminergic neurons. , 1996, Journal of neurophysiology.

[92]  G. Aston-Jones,et al.  Lateral hypothalamic orexin neurons are critically involved in learning to associate an environment with morphine reward , 2007, Behavioural Brain Research.

[93]  Y. Smith,et al.  A cocaine-and-amphetamine-regulated-transcript peptide projection from the lateral hypothalamus to the ventral tegmental area , 2005, Neuroscience.

[94]  P. Overton,et al.  Burst firing in midbrain dopaminergic neurons , 1997, Brain Research Reviews.

[95]  G. Aston-Jones,et al.  Critical Role for Ventral Tegmental Glutamate in Preference for a Cocaine-Conditioned Environment , 2003, Neuropsychopharmacology.

[96]  R. Wise,et al.  Differential involvement of ventral tegmental mu, delta and kappa opioid receptors in modulation of basal mesolimbic dopamine release: in vivo microdialysis studies. , 1993, The Journal of pharmacology and experimental therapeutics.

[97]  A. Grace,et al.  The laterodorsal tegmentum is essential for burst firing of ventral tegmental area dopamine neurons. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[98]  A. Bérod,et al.  Neurons of origin of the neurotensinergic plexus enmeshing the ventral tegmental area in rat: retrograde labeling and in situ hybridization combined , 2001, Neuroscience.

[99]  Y. Shaham,et al.  Molecular neuroadaptations in the accumbens and ventral tegmental area during the first 90 days of forced abstinence from cocaine self‐administration in rats , 2003, Journal of neurochemistry.

[100]  Y. Shaham,et al.  A Role of Ventral Tegmental Area Glutamate in Contextual Cue-Induced Relapse to Heroin Seeking , 2004, The Journal of Neuroscience.

[101]  Peter Redgrave,et al.  Phasic activation of substantia nigra and the ventral tegmental area by chemical stimulation of the superior colliculus: an electrophysiological investigation in the rat , 2003, The European journal of neuroscience.

[102]  J. Mayhew,et al.  How Visual Stimuli Activate Dopaminergic Neurons at Short Latency , 2005, Science.

[103]  M. Krauss,et al.  Differential projections from subfields in the lateral preoptic area to the lateral habenular complex of the rat , 2008, The Journal of comparative neurology.

[104]  P. Overton,et al.  Do non-dopaminergic neurons in the ventral tegmental area play a role in the responses elicited in A10 dopaminergic neurons by electrical stimulation of the prefrontal cortex? , 1998, Experimental Brain Research.

[105]  P. Kalivas,et al.  Involvement of N-methyl-D-aspartate receptor stimulation in the ventral tegmental area and amygdala in behavioral sensitization to cocaine. , 1993, The Journal of pharmacology and experimental therapeutics.

[106]  Mark A. Ungless,et al.  Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons , 2001, Nature.

[107]  R. Wise,et al.  Two Brain Sites for Cannabinoid Reward , 2006, The Journal of Neuroscience.

[108]  M. Olmstead,et al.  Differential effects of atropine, procaine and dopamine in the rat ventral tegmentum on lateral hypothalamic rewarding brain stimulation , 1990, Behavioural Brain Research.

[109]  L. Heimer,et al.  The limbic lobe and its output channels: Implications for emotional functions and adaptive behavior , 2006, Neuroscience & Biobehavioral Reviews.

[110]  R. Wise,et al.  Self-administration of morphine, DAMGO, and DPDPE into the ventral tegmental area of rats , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[111]  S. Carr,et al.  Orexins and Orexin Receptors: A Family of Hypothalamic Neuropeptides and G Protein-Coupled Receptors that Regulate Feeding Behavior , 1998, Cell.

[112]  R. Wise,et al.  Injections of N‐methyl‐D‐aspartate into the ventral hippocampus increase extracellular dopamine in the ventral tegmental area and nucleus accumbens , 1999, Synapse.

[113]  R. Roth,et al.  Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: An anterograde tract‐tracing study with Phaseolus vulgaris leucoagglutinin , 1989, The Journal of comparative neurology.

[114]  G. Chiara Drug addiction as dopamine-dependent associative learning disorder , 1999 .

[115]  P. Gaspar,et al.  Localization of VGLUT3, the vesicular glutamate transporter type 3, in the rat brain , 2004, Neuroscience.

[116]  F E Bloom,et al.  The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[117]  S. Geisler,et al.  On the retention of neurotensin in the ventral tegmental area (VTA) despite destruction of the main neurotensinergic afferents of the VTA — Implications for the organization of forebrain projections to the VTA , 2006, Brain Research.

[118]  T. Hattori,et al.  Single dopaminergic nigrostriatal neurons form two chemically distinct synaptic types: Possible transmitter segregation within neurons , 1991, The Journal of comparative neurology.

[119]  F. Gonon Nonlinear relationship between impulse flow and dopamine released by rat midbrain dopaminergic neurons as studied by in vivo electrochemistry , 1988, Neuroscience.

[120]  R. Wise,et al.  Intracranial self-administration of morphine into the ventral tegmental area in rats. , 1981, Life sciences.

[121]  N. Goeders,et al.  Cortical dopaminergic involvement in cocaine reinforcement. , 1983, Science.

[122]  C W Stiles THE INTERNATIONAL CODE OF NOMENCLATURE. , 1895, Science.

[123]  Amy J. Tindell,et al.  Ventral pallidal neurons code incentive motivation: amplification by mesolimbic sensitization and amphetamine , 2005, The European journal of neuroscience.

[124]  P. Kalivas,et al.  GABA and enkephalin projection from the nucleus accumbens and ventral pallidum to the ventral tegmental area , 1993, Neuroscience.

[125]  R. Oades,et al.  Ventral tegmental (A10) system: neurobiology. 1. Anatomy and connectivity , 1987, Brain Research Reviews.

[126]  John R Martin,et al.  Direct comparison of projections from the central amygdaloid region and nucleus accumbens shell , 1999, The European journal of neuroscience.

[127]  R. Wise,et al.  Effects of pimozide and naloxone on latency for hypothalamically induced eating , 1986, Brain Research.

[128]  G. Aston-Jones,et al.  Activation of Ventral Tegmental Area Cells by the Bed Nucleus of the Stria Terminalis: A Novel Excitatory Amino Acid Input to Midbrain Dopamine Neurons , 2002, The Journal of Neuroscience.

[129]  R. Vertes Differential projections of the infralimbic and prelimbic cortex in the rat , 2004, Synapse.

[130]  A. Grace,et al.  Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission , 2003, Nature Neuroscience.

[131]  E. Nestler,et al.  Drugs of abuse and stress increase the expression of GluR1 and NMDAR1 glutamate receptor subunits in the rat ventral tegmental area: common adaptations among cross-sensitizing agents , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[132]  Peter D. Ward,et al.  Amphetamine-Induced Plasticity of AMPA Receptors in the Ventral Tegmental Area: Effects on Extracellular Levels of Dopamine and Glutamate in Freely Moving Rats , 2001, The Journal of Neuroscience.

[133]  M. Morelli,et al.  Induction of fos‐like‐immunoreactivity in the central extended amygdala by antidepressant drugs , 1999, Synapse.

[134]  D. S. Zahm,et al.  Glutamatergic Afferents of the Ventral Tegmental Area in the Rat , 2007, The Journal of Neuroscience.

[135]  P. Overton,et al.  Stimulation of the prefrontal cortex in the rat induces patterns of activity in midbrain dopaminergic neurons which resemble natural burst events , 1996, Synapse.

[136]  R. Wise,et al.  Intracranial self-stimulation in relation to the ascending dopaminergic systems of the midbrain: A moveable electrode mapping study , 1980, Brain Research.

[137]  A. Routtenberg,et al.  Brainstem pathways of reward. , 1969, Journal of comparative and physiological psychology.

[138]  W. Pan,et al.  Pedunculopontine Tegmental Nucleus Controls Conditioned Responses of Midbrain Dopamine Neurons in Behaving Rats , 2005, The Journal of Neuroscience.

[139]  T. Svensson,et al.  Local cooling of pre-frontal cortex induces pacemaker-like firing of dopamine neurons in rat ventral tegmental area in vivo. , 1989, Acta physiologica Scandinavica.

[140]  M. Morales,et al.  Glutamatergic neurons are present in the rat ventral tegmental area , 2007, The European journal of neuroscience.

[141]  R. Wise,et al.  A Role for Conditioned Ventral Tegmental Glutamate Release in Cocaine Seeking , 2007, The Journal of Neuroscience.

[142]  C. Nemeroff,et al.  Neurotensin and dopamine interactions. , 2001, Pharmacological reviews.

[143]  A. Phillips,et al.  Dynamic Changes in Nucleus Accumbens Dopamine Efflux During the Coolidge Effect in Male Rats , 1997, The Journal of Neuroscience.

[144]  Christian Rosenmund,et al.  Identification of Differentiation-Associated Brain-Specific Phosphate Transporter as a Second Vesicular Glutamate Transporter (VGLUT2) , 2001, The Journal of Neuroscience.

[145]  H. Fields,et al.  Orexin A in the VTA Is Critical for the Induction of Synaptic Plasticity and Behavioral Sensitization to Cocaine , 2006, Neuron.

[146]  R. North,et al.  Burst firing in dopamine neurons induced by N-methyl-D-aspartate: role of electrogenic sodium pump. , 1992, Science.

[147]  A. Monaco,et al.  Self-injection of amphetamine directly into the brain , 2004, Psychopharmacology.

[148]  Michael Esterman,et al.  The Distribution and Mechanism of Action of Ghrelin in the CNS Demonstrates a Novel Hypothalamic Circuit Regulating Energy Homeostasis , 2003, Neuron.

[149]  J. Lisman,et al.  The Hippocampal-VTA Loop: Controlling the Entry of Information into Long-Term Memory , 2005, Neuron.

[150]  S. Shioda,et al.  Direct Involvement of Orexinergic Systems in the Activation of the Mesolimbic Dopamine Pathway and Related Behaviors Induced by Morphine , 2006, The Journal of Neuroscience.

[151]  C. Shute,et al.  The ascending cholinergic reticular system: neocortical, olfactory and subcortical projections. , 1967, Brain : a journal of neurology.

[152]  G. Aston-Jones,et al.  Glutamate-associated plasticity in the ventral tegmental area is necessary for conditioning environmental stimuli with morphine , 2004, Neuroscience.

[153]  S. Sesack,et al.  Projections from the Rat Prefrontal Cortex to the Ventral Tegmental Area: Target Specificity in the Synaptic Associations with Mesoaccumbens and Mesocortical Neurons , 2000, The Journal of Neuroscience.

[154]  Peter Redgrave,et al.  A direct projection from superior colliculus to substantia nigra for detecting salient visual events , 2003, Nature Neuroscience.

[155]  R. Wise,et al.  Pimozide-induced extinction of intracranial self-stimulation: response patterns rule out motor or performance deficits , 1976, Brain Research.

[156]  R. Malenka,et al.  Drugs of Abuse and Stress Trigger a Common Synaptic Adaptation in Dopamine Neurons , 2003, Neuron.

[157]  J. Wickens,et al.  Space, time and dopamine , 2007, Trends in Neurosciences.

[158]  H. Mansvelder,et al.  Long-Term Potentiation of Excitatory Inputs to Brain Reward Areas by Nicotine , 2000, Neuron.

[159]  A. Grace,et al.  Regulation of firing of dopaminergic neurons and control of goal-directed behaviors , 2007, Trends in Neurosciences.

[160]  P. Kalivas,et al.  Involvement of the ventral tegmental area in locomotion elicited from the nucleus accumbens or ventral pallidum. , 1996, The Journal of pharmacology and experimental therapeutics.

[161]  W. Cowan,et al.  An autoradiographic study of the efferent connections of the lateral hypothalamic area in the rat , 1979, The Journal of comparative neurology.

[162]  R. Wise,et al.  Opioid receptor subtypes associated with ventral tegmental facilitation and periaqueductal gray inhibition of feeding , 1987, Brain Research.

[163]  Michihiro Kawano,et al.  Particular subpopulations of midbrain and hypothalamic dopamine neurons express vesicular glutamate transporter 2 in the rat brain , 2006, The Journal of comparative neurology.

[164]  L. Swanson,et al.  The projections of the ventral tegmental area and adjacent regions: A combined fluorescent retrograde tracer and immunofluorescence study in the rat , 1982, Brain Research Bulletin.

[165]  R. Wise,et al.  Major attenuation of food reward with performance-sparing doses of pimozide in the rat. , 1978, Canadian journal of psychology.

[166]  A. Bonci,et al.  Corticotropin-Releasing Factor Requires CRF Binding Protein to Potentiate NMDA Receptors via CRF Receptor 2 in Dopamine Neurons , 2003, Neuron.

[167]  R. Wise,et al.  Pimozide attenuates lever pressing for water reinforcement in rats , 1981, Pharmacology Biochemistry and Behavior.

[168]  Kyle S. Smith,et al.  Ventral pallidum firing codes hedonic reward: when a bad taste turns good. , 2006, Journal of neurophysiology.

[169]  A. Beaudet,et al.  Serotonin axon terminals in the ventral tegmental area of the rat: fine structure and synaptic input to dopaminergic neurons , 1987, Brain Research.

[170]  E. Nestler,et al.  Topographical organization of GABAergic neurons within the ventral tegmental area of the rat , 2007, Synapse.

[171]  H. Nogami,et al.  Regional expression of a gene encoding a neuron-specific Na(+)-dependent inorganic phosphate cotransporter (DNPI) in the rat forebrain. , 2000, Brain research. Molecular brain research.

[172]  R. Wise,et al.  Chemical Stimulation of the Ventral Hippocampus Elevates Nucleus Accumbens Dopamine by Activating Dopaminergic Neurons of the Ventral Tegmental Area , 2000, The Journal of Neuroscience.

[173]  A. Beaudet,et al.  Electron microscopic localization of neurotensin binding sites in the midbrain tegmentum of the rat. I. Ventral tegmental area and the interfascicular nucleus , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[174]  T. Svensson,et al.  The excitatory amino acid antagonist kynurenate induces pacemaker-like firing of dopamine neurons in rat ventral tegmental area in vivo. , 1988, Acta physiologica Scandinavica.

[175]  F. J. White,et al.  Increased responsiveness of ventral tegmental area dopamine neurons to glutamate after repeated administration of cocaine or amphetamine is transient and selectively involves AMPA receptors. , 1997, The Journal of pharmacology and experimental therapeutics.

[176]  L. Swanson,et al.  An autoradiographic study of the efferent connections of the preoptic region in the rat , 1976, The Journal of comparative neurology.

[177]  R. Wightman,et al.  Rapid Dopamine Signaling in the Nucleus Accumbens during Contingent and Noncontingent Cocaine Administration , 2005, Neuropsychopharmacology.

[178]  M. Schäfer,et al.  Molecular Cloning and Functional Identification of Mouse Vesicular Glutamate Transporter 3 and Its Expression in Subsets of Novel Excitatory Neurons* , 2002, The Journal of Biological Chemistry.

[179]  Wei-Xing Shi Slow oscillatory firing: a major firing pattern of dopamine neurons in the ventral tegmental area. , 2005, Journal of neurophysiology.

[180]  G. Aston-Jones,et al.  A role for lateral hypothalamic orexin neurons in reward seeking , 2005, Nature.

[181]  S. Sesack,et al.  Glutamate synaptic inputs to ventral tegmental area neurons in the rat derive primarily from subcortical sources , 2007, Neuroscience.

[182]  C. Gallistel,et al.  Pimozide and amphetamine have opposing effects on the reward summation function , 1984, Pharmacology Biochemistry and Behavior.

[183]  W. Rostène,et al.  Neurotensin: an endogenous psychostimulant? , 2002, Current opinion in pharmacology.

[184]  C. Kruse,et al.  Neurotensin attenuates the quinpirole-induced inhibition of the firing rate of dopamine neurons in the rat substantia nigra pars compacta and the ventral tegmental area , 1999, Neuroscience.

[185]  L. Záborszky,et al.  Vglut2 afferents to the medial prefrontal and primary somatosensory cortices: A combined retrograde tracing in situ hybridization , 2005, The Journal of comparative neurology.

[186]  H. Fibiger,et al.  Afferent connections of the laterodorsal and the pedunculopontine tegmental nuclei in the rat: A retro‐ and antero‐grade transport and immunohistochemical study , 1992, The Journal of comparative neurology.