Refined long-time asymptotics for some polymeric fluid flow models

We consider a polymeric fluid model, consisting of the incompressible NavierStokes equations coupled to a non-symmetric Fokker-Planck equation. First, steady states and exponential convergence to them in relative entropy are proved for the linear Fokker-Planck equation in the Hookean case. The FENE model is also addressed proving the existence of stationary states and the convergence towards them in suitable weighted norms. Then, using the “entropy method” exponential convergence to the steady state is established for the coupled model in the Hookean case under some smallness assumption. The results continue and expand the analysis of [JLLO] in both the Hookean and the FENE models.

[1]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[2]  M. Émery,et al.  Hypercontractivité de semi-groupes de diffusion , 1984 .

[3]  G. Folland Introduction to Partial Differential Equations , 1976 .

[4]  J. Snyders,et al.  On Nonnegative Solutions of the Equation $AD + DA' = - C$ , 1970 .

[5]  R. Bird Dynamics of Polymeric Liquids , 1977 .

[6]  T N Phillips,et al.  Contemporary Topics in Computational Rheology , 2002 .

[7]  Giuseppe Toscani,et al.  ON CONVEX SOBOLEV INEQUALITIES AND THE RATE OF CONVERGENCE TO EQUILIBRIUM FOR FOKKER-PLANCK TYPE EQUATIONS , 2001 .

[8]  C. Villani,et al.  ON THE TREND TO EQUILIBRIUM FOR THE FOKKER-PLANCK EQUATION : AN INTERPLAY BETWEEN PHYSICS AND FUNCTIONAL ANALYSIS , 2004 .

[9]  A. Kufner Weighted Sobolev Spaces , 1985 .

[10]  A. Arnold,et al.  The Wigner-Fokker-Planck equation: Stationary states and large-time behavior , 2007, 0707.2445.

[11]  Axel Ruhe Closest normal matrix finally found! , 1987 .

[12]  Jaemin Shin,et al.  GLOBAL WELL-POSEDNESS FOR THE MICROSCOPIC FENE MODEL WITH A SHARP BOUNDARY CONDITION , 2009, 0905.1142.

[13]  Qiang Du,et al.  FENE Dumbbell Model and Its Several Linear and Nonlinear Closure Approximations , 2005, Multiscale Model. Simul..

[14]  Ping Zhang,et al.  On a micro‐macro model for polymeric fluids near equilibrium , 2007 .

[15]  Qiangchang Ju,et al.  Large-time behavior of non-symmetric Fokker-Planck type equations , 2008 .

[16]  Laurent Chupin,et al.  The FENE Model for Viscoelastic Thin Film Flows , 2009 .

[17]  Anton Arnold,et al.  Entropy decay of discretized fokker-planck equations I—Temporal semidiscretization , 2003 .

[18]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[19]  Nader Masmoudi,et al.  Well‐posedness for the FENE dumbbell model of polymeric flows , 2008 .

[20]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[21]  Benjamin Jourdain,et al.  Long-Time Asymptotics of a Multiscale Model for Polymeric Fluid Flows , 2006 .

[22]  D. Stroock,et al.  Logarithmic Sobolev inequalities and stochastic Ising models , 1987 .

[23]  R. Rogers,et al.  An introduction to partial differential equations , 1993 .

[24]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[25]  Lajos Laszlo An Attainable Lower Bound for the Best Normal Approximation , 1994 .

[26]  Pingwen Zhang,et al.  Local Existence for the FENE-Dumbbell Model of Polymeric Fluids , 2004 .

[27]  Hailiang Liu,et al.  Boundary Conditions for the Microscopic FENE Models , 2008, SIAM J. Appl. Math..