Optimizing a Decoupling Capacitor on a PCB: A Fully Time-Domain Approach Based on PSO and TD-CIM

In this paper we propose an efficient methodology for finding the optimal position and value of a decoupling capacitor on a printed circuit board (PCB). The solution procedure is carried out entirely in the time domain and it is based on a Particle Swarm Optimization (PSO) algorithm in combination with the Time-Domain Contour Integral Method (TD-CIM). The introduced method is tested on four illustrative problem scenarios.

[1]  J. Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[2]  S. Kahng GA-optimized decoupling capacitors damping the rectangular power-bus' cavity-mode resonances , 2006, IEEE Microwave and Wireless Components Letters.

[3]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[4]  B. Archambeault,et al.  Modeling the effectiveness of decoupling capacitors for multilayer PCBs , 1998, 1998 IEEE EMC Symposium. International Symposium on Electromagnetic Compatibility. Symposium Record (Cat. No.98CH36253).

[5]  Shiyan Hu,et al.  Hierarchical Cross-Entropy Optimization for Fast On-Chip Decap Budgeting , 2011, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[6]  Martin Stumpf Electromagnetic Reciprocity in Antenna Theory , 2017 .

[7]  James L. Drewniak,et al.  PDN Design Strategies : I . Ceramic SMT Decoupling Capacitors – What Values Should I Choose ? , 2006 .

[8]  M. Štumpf Analysis of Dispersive Power-Ground Structures Using the Time-Domain Contour Integral Method , 2015, IEEE Transactions on Electromagnetic Compatibility.

[9]  James L. Drewniak,et al.  The first is entitled “ PDN Design Strategies : II . Ceramic SMT Decoupling Capacitors – Does Location Matter ? ” , 2006 .

[10]  Takayuki Watanabe,et al.  Simulation for the optimal placement of decoupling capacitors on printed circuit board , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[11]  Rakesh Malik,et al.  Selection and placement of decoupling capacitors in high speed systems , 2013, IEEE Electromagnetic Compatibility Magazine.

[12]  Y. Rahmat-Samii,et al.  Particle swarm optimization in electromagnetics , 2004, IEEE Transactions on Antennas and Propagation.

[13]  Antonio Orlandi,et al.  Impact of Genetic Algorithm Control Parameters on Chip PDN Decoupling Capacitors Placement , 2018, IEEE Transactions on Electromagnetic Compatibility.

[14]  Madhavan Swaminathan,et al.  Automatic package and board decoupling capacitor placement using genetic algorithms and M-FDM , 2008, 2008 45th ACM/IEEE Design Automation Conference.

[15]  Jae Young Choi,et al.  Decoupling Capacitor Placement in Power Delivery Networks Using MFEM , 2011, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[16]  Martin Stumpf Time-Domain Analysis of Rectangular Power-Ground Structures With Relaxation , 2014, IEEE Transactions on Electromagnetic Compatibility.

[17]  Jun Fan,et al.  Quantifying SMT decoupling capacitor placement in dc power-bus design for multilayer PCBs , 2001 .

[18]  D. S. Wills,et al.  On-chip decoupling capacitor optimization using architectural level prediction , 2000, Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems (Cat.No.CH37144).

[19]  O. Tesson,et al.  Mosaic placement of very high density 3D capacitors for efficient decoupling functionality in the RF domain , 2009, 2009 IEEE Radio Frequency Integrated Circuits Symposium.

[20]  Sani R. Nassif,et al.  Optimal decoupling capacitor sizing and placement for standard-cell layout designs , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[21]  M. Štumpf The Time-Domain Contour Integral Method—An Approach to the Analysis of Double-Plane Circuits , 2014, IEEE Transactions on Electromagnetic Compatibility.