Recent advances in the rapid detection of Bacillus anthracis

Bacillus anthracis is a Gram-positive, spore-forming rod that causes anthrax. Culturebased methods are the gold standard for the identification of virulent B. anthracis strains but these require days for completion. The experience from the anthrax attacks in September and October of 2001 revealed the urgent need for methods that can rapidly detect this pathogen with high reliability. Because of the extensive homology among non-anthrax Bacillus sp. at the chromosomal level, rapid detection of virulent B. anthracis strains depends on markers associated with the two plasmids, pXO1 and pXO2, responsible for its virulence. Genes encoding toxins and capsules have been used as markers for pXO1 and pXO2, respectively, in methods that are designed for rapid and sensitive detection of B. anthracis DNA, such as real-time polymerase chain reaction, direct liquid phase hybridization, andDNAmicroarrays. A variety of platforms can be modified to suit the needs for rapid detection of B. anthracis antigens, but little is known about plasmid-encoded antigens expressed in spores. Future studies should be aimed at detecting markers for pXO1 and pXO2in viable spores. ! 2005 Lippincott Williams & Wilkins

[1]  Y. Shangkuan,et al.  Comparison of PCR–RFLP, ribotyping and ERIC–PCR for typing Bacillus anthracis and Bacillus cereus strains , 2000, Journal of applied microbiology.

[2]  T. Leighton,et al.  Molecular recognition specificity of Bacillus anthracis spore antibodies , 1999, Journal of applied microbiology.

[3]  A. Hoffmaster,et al.  Sequence and Organization of pXO1, the Large Bacillus anthracis Plasmid Harboring the Anthrax Toxin Genes , 1999, Journal of bacteriology.

[4]  R. Abramson,et al.  Detection of specific polymerase chain reaction product by utilizing the 5'----3' exonuclease activity of Thermus aquaticus DNA polymerase. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[5]  P. Turnbull,et al.  Anthrax vaccines: past, present and future. , 1991, Vaccine.

[6]  J. Ezzell,et al.  Sensitive and Rapid Identification of Biological Threat Agents , 1999, Annals of the New York Academy of Sciences.

[7]  K. Martin,et al.  Investigation of spore surface antigens in the genus Bacillus by the use of polyclonal antibodies in immunofluorescence tests. , 1988, The Journal of applied bacteriology.

[8]  H. Yu Enhancing immunoelectrochemiluminescence (IECL) for sensitive bacterial detection. , 1996, Journal of immunological methods.

[9]  P Belgrader,et al.  A minisonicator to rapidly disrupt bacterial spores for DNA analysis. , 1999, Analytical chemistry.

[10]  P. Sylvestre,et al.  A collagen‐like surface glycoprotein is a structural component of the Bacillus anthracis exosporium , 2002, Molecular microbiology.

[11]  F. Ligler,et al.  Assay Development for a Portable Fiberoptic Biosensor , 1996, ASAIO journal.

[12]  L. K. Nakamura Bacillus pseudomycoides sp. nov. , 1998, International journal of systematic bacteriology.

[13]  K. Martin,et al.  Dual-parameter scatter-flow immunofluorescence analysis of Bacillus spores. , 1985, Cytometry.

[14]  T. Leighton,et al.  Molecular recognition specificity of Bacillus globigii spore antibodies , 2000, Letters in applied microbiology.

[15]  D. Persing,et al.  Molecular diagnostics of infectious diseases. , 1997, Clinical chemistry.

[16]  P. Stopa The flow cytometry of Bacillus anthracis spores revisited. , 2000, Cytometry.

[17]  H. Smith,et al.  Purification of factor I and recognition of a third factor of the anthrax toxin. , 1961, Journal of general microbiology.

[18]  Tanja Popovic,et al.  Sequencing of 16S rRNA Gene: A Rapid Tool for Identification of Bacillus anthracis , 2002, Emerging infectious diseases.

[19]  M. Heller,et al.  Microelectronic array devices and techniques for electric field enhanced DNA hybridization in low‐conductance buffers , 2002, Electrophoresis.

[20]  U J Balis,et al.  The LightCycler: a microvolume multisample fluorimeter with rapid temperature control. , 1997, BioTechniques.

[21]  H. Smith,et al.  Polyglutamic acid from Bacillus anthracis grown in vivo; structure and aggressin activity. , 1956, The Biochemical journal.

[22]  J. Bruno,et al.  Sensitive detection of biotoxoids and bacterial spores using an immunomagnetic electrochemiluminescence sensor. , 1995, Biosensors & bioelectronics.

[23]  J. Sekiguchi,et al.  Nucleotide sequence and regulation of a new putative cell wall hydrolase gene, cwlD, which affects germination in Bacillus subtilis. , 1995, Journal of bacteriology.

[24]  A P Phillips,et al.  Limitations of flow cytometry for the specific detection of bacteria in mixed populations. , 1988, Journal of immunological methods.

[25]  S. Makino,et al.  Molecular characterization and protein analysis of the cap region, which is essential for encapsulation in Bacillus anthracis , 1989, Journal of bacteriology.

[26]  P. Sylvestre,et al.  Isolation of a specific chromosomic DNA sequence of Bacillus anthracis and its possible use in diagnosis. , 1996, FEMS immunology and medical microbiology.

[27]  D. Daffonchio,et al.  Homoduplex and Heteroduplex Polymorphisms of the Amplified Ribosomal 16S-23S Internal Transcribed Spacers Describe Genetic Relationships in the “Bacillus cereus Group” , 2000, Applied and Environmental Microbiology.

[28]  S. Welkos,et al.  The role of antibodies to Bacillus anthracis and anthrax toxin components in inhibiting the early stages of infection by anthrax spores. , 2001, Microbiology.

[29]  D H Persing,et al.  Molecular diagnostics of infectious diseases , 1999 .

[30]  W. Beyer,et al.  Polymerase chain reaction‐ELISA to detect Bacillus anthracis from soil samples—limitations of present published primers , 1999, Journal of applied microbiology.

[31]  A. Castro,et al.  Ultrasensitive, direct detection of a specific DNA sequence of Bacillus anthracis in solution. , 2000, The Analyst.

[32]  Ames,et al.  A bacteriolytic agent that detects and kills Bacillus anthracis , 2022 .

[33]  I. Nazarenko,et al.  A closed tube format for amplification and detection of DNA based on energy transfer. , 1997, Nucleic acids research.

[34]  E. Eitzen,et al.  Clinical and epidemiologic principles of anthrax. , 1999, Emerging infectious diseases.

[35]  James Pannucci,et al.  Bacillus anthracis pXO1 Plasmid Sequence Conservation among Closely Related Bacterial Species , 2002, Journal of bacteriology.

[36]  R. Grunow,et al.  Field detection of Francisella tularensis. , 2000, Scandinavian journal of infectious diseases.

[37]  G L Andersen,et al.  Sequence-specific identification of 18 pathogenic microorganisms using microarray technology. , 2002, Molecular and cellular probes.

[38]  M. Blaser,et al.  PCR-Based Detection of Bacillus anthracis in Formalin-Fixed Tissue from a Patient Receiving Ciprofloxacin , 2002, Journal of Clinical Microbiology.

[39]  M. Collins,et al.  Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. , 1991, International journal of systematic bacteriology.

[40]  G. Patra,et al.  Utilization of the rpoB Gene as a Specific Chromosomal Marker for Real-Time PCR Detection of Bacillus anthracis , 2001, Applied and Environmental Microbiology.

[41]  Martin Enserink,et al.  Biodefense Hampered by Inadequate Tests , 2001, Science.

[42]  P. Belgrader,et al.  PCR Detection of Bacteria in Seven Minutes , 1999, Science.

[43]  H. Cheun,et al.  Detection of anthrax spores from the air by real‐time PCR , 2001, Letters in applied microbiology.

[44]  C. B. Thorne,et al.  RAPID LETHAL EFFECT IN RATS OF A THIRD COMPONENT FOUND UPON FRACTIONATING THE TOXIN OF BACILLUS ANTHRACIS , 1962, Journal of bacteriology.

[45]  J. Ezzell,et al.  Identification of Bacillus anthracis by using monoclonal antibody to cell wall galactose-N-acetylglucosamine polysaccharide , 1990, Journal of clinical microbiology.

[46]  Marc Madou,et al.  MEMS-based sample preparation for molecular diagnostics , 2002, Analytical and bioanalytical chemistry.

[47]  M. Collins,et al.  Comparative analysis of 23S ribosomal RNA gene sequences of Bacillus anthracis and emetic Bacillus cereus determined by PCR-direct sequencing. , 1992, FEMS microbiology letters.

[48]  Thomas F. Smith,et al.  Application of rapid-cycle real-time polymerase chain reaction for the detection of microbial pathogens: the Mayo-Roche Rapid Anthrax Test. , 2002, Mayo Clinic proceedings.

[49]  S. Scherer,et al.  Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. , 1998, International journal of systematic bacteriology.

[50]  C. Turnbough,et al.  Identification of the Immunodominant Protein and Other Proteins of the Bacillus anthracis Exosporium , 2003, Journal of bacteriology.

[51]  R. Amann,et al.  Combination of rRNA-Targeted Hybridization Probes and Immuno-Probes for the Identification of Bacter , 1996 .

[52]  Thomas F. Smith,et al.  Detection of Bacillus anthracis DNA by LightCycler PCR , 2002, Journal of Clinical Microbiology.

[53]  M. Mock,et al.  The Ba813 chromosomal DNA sequence effectively traces the whole Bacillus anthracis community , 1999, Journal of applied microbiology.

[54]  Erko Stackebrandt,et al.  Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology , 1994 .

[55]  Jeffery H. Fenton,et al.  A miniature integrated device for automated multistep genetic assays. , 2000, Nucleic acids research.

[56]  M. Mock,et al.  Bacillus anthracis surface: capsule and S‐layer , 1999, Journal of applied microbiology.