Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave.

We study the axial force acting on dielectric spherical particles smaller than the trapping wavelength that are placed in the Gaussian standing wave. We derive analytical formulas for immersed particles with relative refractive indices close to unity and compare them with the numerical results obtained by generalized Lorenz-Mie theory (GLMT). We show that the axial optical force depends periodically on the particle size and that the equilibrium position of the particle alternates between the standing-wave antinodes and nodes. For certain particle sizes, gradient forces from the neighboring antinodes cancel each other and disable particle confinement. Using the GLMT we compare maximum axial trapping forces provided by the Gaussian standing-wave trap (SWT) and single-beam trap (SBT) as a function of particle size, refractive index, and beam waist size. We show that the SWT produces axial forces at least ten times stronger and permits particle confinement in a wider range of refractive indices and beam waists compared with those of the SBT.

[1]  Gérard Gouesbet,et al.  Higher-order descriptions of Gaussian beams , 1996 .

[2]  S. Block,et al.  Construction of multiple-beam optical traps with nanometer-resolution position sensing , 1996 .

[3]  H. Misawa,et al.  Pattern formation and flow control of fine particles by laser-scanning micromanipulation. , 1991, Optics letters.

[4]  H. Rubinsztein-Dunlop,et al.  Three-dimensional imaging with optical tweezers. , 1999, Applied optics.

[5]  L. Goldstein,et al.  Bead movement by single kinesin molecules studied with optical tweezers , 1990, Nature.

[6]  J. P. Barton,et al.  Internal and near‐surface electromagnetic fields for a spherical particle irradiated by a focused laser beam , 1988 .

[7]  J. P. Barton,et al.  Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam , 1989 .

[8]  Michael W. Berns,et al.  Interferometric optical tweezers , 1997 .

[9]  H. Masuhara,et al.  Optical manipulation of a lasing microparticle and its application to near-field microspectroscopy , 1997 .

[10]  E. Stelzer,et al.  Optical trapping of dielectric particles in arbitrary fields. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[11]  R J Baskin,et al.  Microinstrument gradient-force optical trap. , 1999, Applied optics.

[12]  O. Axner,et al.  Design for fully steerable dual-trap optical tweezers. , 1997, Applied optics.

[13]  E. H. Linfoot Principles of Optics , 1961 .

[14]  E. Stelzer,et al.  Photonic force microscope based on optical tweezers and two-photon excitation for biological applications. , 1997, Journal of structural biology.

[15]  David Keller,et al.  Single-molecule studies of the effect of template tension on T7 DNA polymerase activity , 2000, Nature.

[16]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[17]  M. Prentiss,et al.  Demonstration of a fiber-optical light-force trap. , 1993, Optics letters.

[18]  J. P. Barton,et al.  Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam , 1989 .

[19]  Satoshi Kawata,et al.  Near-Field Scanning Optical Microscope with a Laser Trapped Probe , 1994 .

[20]  Toshimitsu Asakura,et al.  Radiation forces on a dielectric sphere in the Rayleigh scattering regime , 1996 .

[21]  S. Quake,et al.  Relaxation of a single DNA molecule observed by optical microscopy. , 1994, Science.

[22]  A. Ashkin,et al.  Optical trapping and manipulation of viruses and bacteria. , 1987, Science.

[23]  Gérard Gréhan,et al.  GENERALIZED LORENZ-MIE THEORIES, FROM PAST TO FUTURE , 2000 .

[24]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[25]  Pavel Zemánek,et al.  Optical trapping of Rayleigh particles using a Gaussian standing wave , 1998 .

[26]  P. Zemánek,et al.  Single-beam trapping in front of reflective surfaces. , 2001, Optics letters.

[27]  Christoph F. Schmidt,et al.  Direct observation of kinesin stepping by optical trapping interferometry , 1993, Nature.

[28]  Milton Kerker,et al.  The Scattering of Light and Other Electromagnetic Radiation ~Academic , 1969 .

[29]  A. Chiou,et al.  Self-aligned dual-beam optical laser trap using photorefractive phase conjugation , 1997 .

[30]  P. Zemánek,et al.  Optical trapping of nanoparticles and microparticles by a Gaussian standing wave. , 1999, Optics letters.

[31]  D. Grier,et al.  Optical tweezer arrays and optical substrates created with diffractive optics , 1998 .

[32]  Steven M. Block,et al.  Optical trapping of metallic Rayleigh particles. , 1994, Optics letters.

[33]  Tsvi Tlusty,et al.  OPTICAL GRADIENT FORCES OF STRONGLY LOCALIZED FIELDS , 1998 .