The state dependence of integrated, instantaneous, and fluctuating entropy production in quantum and classical processes

Given a fixed physical process, we consider the entropy production (EP) incurred by some initial state ρ, additional to the minimal EP incurred by the least-dissipative state φ. We show that this additional EP has a universal information-theoretic form, given by the contraction of the relative entropy between ρ and φ over time. This result holds for total integrated EP, instantaneous EP rate, and fluctuating EP. We derive novel bounds on EP, analyze the thermodynamics of quantum error correction, and propose a thermodynamically-motivated measure of the logical irreversibility of a channel.

[1]  P. Riechers,et al.  Initial-state dependence of thermodynamic dissipation for any quantum process. , 2020, Physical review. E.

[2]  David H. Wolpert,et al.  The stochastic thermodynamics of computation , 2019, Journal of Physics A: Mathematical and Theoretical.

[3]  G. Lindblad Expectations and entropy inequalities for finite quantum systems , 1974 .

[4]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[5]  Amiel Feinstein,et al.  Information and information stability of random variables and processes , 1964 .

[6]  P. Harremoës Information Topologies with Applications , 2007 .

[7]  Massimiliano Esposito,et al.  Three detailed fluctuation theorems. , 2009, Physical review letters.

[8]  R. Spekkens,et al.  Towards a formulation of quantum theory as a causally neutral theory of Bayesian inference , 2011, 1107.5849.

[9]  Maximizing free energy gain , 2017, 1705.00041.

[10]  M. Paternostro,et al.  Irreversible entropy production: From classical to quantum , 2020, Reviews of Modern Physics.

[11]  Todd R. Gingrich,et al.  Fundamental Bounds on First Passage Time Fluctuations for Currents. , 2017, Physical review letters.

[12]  Christopher Jarzynski,et al.  Illustrative example of the relationship between dissipation and relative entropy. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  A. Wehrl General properties of entropy , 1978 .

[14]  J. Parrondo,et al.  Dissipation: the phase-space perspective. , 2007, Physical review letters.

[15]  J. Parrondo,et al.  Entropy production and the arrow of time , 2009, 0904.1573.

[16]  Koenraad Audenaert,et al.  Telescopic Relative Entropy , 2011, TQC.

[17]  Thermodynamic costs of Turing machines , 2019, 1912.04685.

[18]  Mark M. Wilde,et al.  Entropy of a Quantum Channel: Definition, Properties, and Application , 2020, 2020 IEEE International Symposium on Information Theory (ISIT).

[19]  B. Baumgartner,et al.  Analysis of quantum semigroups with GKS–Lindblad generators: I. Simple generators , 2007, 0710.5385.

[20]  Plastino Fisher information and bounds to the entropy increase. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  H. Spohn Entropy production for quantum dynamical semigroups , 1978 .

[22]  Massimiliano Esposito,et al.  Finite-time thermodynamics for a single-level quantum dot , 2009, 0909.3618.

[23]  F. Schlögl,et al.  Thermodynamic metric and stochastic measures , 1985 .

[24]  E. Lutz,et al.  Quantum Fluctuation Theorems beyond Two-Point Measurements. , 2019, Physical review letters.

[25]  Mark M. Wilde,et al.  Fundamental limits on quantum dynamics based on entropy change , 2017, 1707.06584.

[26]  Artemy Kolchinsky,et al.  Thermodynamics of computing with circuits , 2018, New Journal of Physics.

[27]  M. Raginsky Strictly contractive quantum channels and physically realizable quantum computers , 2001, quant-ph/0105141.

[28]  Eugene Seneta,et al.  Equivalence of certain entropy contraction coefficients , 1994 .

[29]  A. S. Holevo,et al.  On lower semicontinuity of the entropic disturbance and its applications in quantum information theory , 2016, 1608.02203.

[30]  Artemy Kolchinsky,et al.  Entropy production and thermodynamics of information under protocol constraints , 2020, ArXiv.

[31]  Jordan M Horowitz,et al.  Nonequilibrium potential and fluctuation theorems for quantum maps. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Flemming Topsøe,et al.  Information-theoretical optimization techniques , 1979, Kybernetika.

[33]  S Turgut Relations between entropies produced in nondeterministic thermodynamic processes. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  U. Seifert Entropy production along a stochastic trajectory and an integral fluctuation theorem. , 2005, Physical review letters.

[35]  J. Anders,et al.  Entropy production and time asymmetry in the presence of strong interactions. , 2017, Physical review. E.

[36]  Hyukjoon Kwon,et al.  Fluctuation Theorems for a Quantum Channel , 2018, Physical Review X.

[37]  A. Holevo Entropy gain and the Choi-Jamiolkowski correspondence for infinite-dimensional quantum evolutions , 2011 .

[38]  D. Wolpert,et al.  Dependence of dissipation on the initial distribution over states , 2016, 1607.00956.

[39]  Herbert Spohn,et al.  Irreversible Thermodynamics for Quantum Systems Weakly Coupled to Thermal Reservoirs , 2007 .

[40]  K. Funo,et al.  Speed Limit for Classical Stochastic Processes. , 2018, Physical review letters.

[41]  Denes Petz,et al.  Structure of Sufficient Quantum Coarse-Grainings , 2004 .

[42]  Michal Horodecki,et al.  Towards a Unified Approach to Information-Disturbance Tradeoffs in Quantum Measurements , 2008, Open Syst. Inf. Dyn..

[43]  Mark M. Wilde,et al.  Approximate reversibility in the context of entropy gain, information gain, and complete positivity , 2016, 1601.01207.

[44]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[45]  Mario Berta,et al.  The smooth entropy formalism for von Neumann algebras , 2011, 1107.5460.

[46]  Mark M. Wilde,et al.  Universal Recovery Maps and Approximate Sufficiency of Quantum Relative Entropy , 2015, Annales Henri Poincaré.

[47]  O. Maroney Generalizing Landauer's principle. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  Paul Althaus Smith,et al.  Pure and applied mathematics; : a series of monographs and textbooks. , 2003 .

[49]  Christian Van Den Broeck,et al.  Stochastic thermodynamics: A brief introduction , 2013 .

[50]  Nonadiabatic entropy production for non-Markov dynamics. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  M. Esposito,et al.  Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems , 2008, 0811.3717.

[52]  M. Esposito,et al.  Three faces of the second law. II. Fokker-Planck formulation. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  B. Baumgartner,et al.  Analysis of quantum semigroups with GKS–Lindblad generators: II. General , 2008, 0806.3164.

[54]  Mark M. Wilde,et al.  Recoverability in quantum information theory , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[55]  E. Lutz,et al.  Nonequilibrium entropy production for open quantum systems. , 2011, Physical review letters.

[56]  T. Sagawa,et al.  Equivalent Definitions of the Quantum Nonadiabatic Entropy Production , 2014, 1403.7778.

[57]  P. Talkner,et al.  Colloquium: Quantum fluctuation relations: Foundations and applications , 2010, 1012.2268.

[58]  O. Maroney The (absence of a) relationship between thermodynamic and logical reversibility , 2004, physics/0406137.

[59]  J. Parrondo,et al.  Entropy production along nonequilibrium quantum jump trajectories , 2013, 1305.6793.

[60]  Alexander S. Holevo,et al.  The entropy gain of quantum channels , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[61]  P. Riechers,et al.  Impossibility of achieving Landauer's bound for almost every quantum state , 2021, Physical Review A.

[62]  A. Allahverdyan,et al.  Nonequilibrium quantum fluctuations of work. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  M. Esposito,et al.  Stochastic thermodynamics in the strong coupling regime: An unambiguous approach based on coarse graining. , 2017, Physical review. E.

[64]  Mark M. Wilde,et al.  Work and reversibility in quantum thermodynamics , 2015, Physical Review A.

[65]  Markus P. Mueller Correlating Thermal Machines and the Second Law at the Nanoscale , 2017, Physical Review X.

[66]  Todd R. Gingrich,et al.  Dissipation Bounds All Steady-State Current Fluctuations. , 2015, Physical review letters.

[67]  Robert Alicki,et al.  The quantum open system as a model of the heat engine , 1979 .

[68]  Massimiliano Esposito,et al.  Second law and Landauer principle far from equilibrium , 2011, 1104.5165.

[69]  A. Allahverdyan,et al.  Excluding joint probabilities from quantum theory , 2018, 1803.06722.

[70]  R. Spinney,et al.  Nonequilibrium thermodynamics of stochastic systems with odd and even variables. , 2012, Physical review letters.

[71]  U. Seifert First and Second Law of Thermodynamics at Strong Coupling. , 2015, Physical review letters.

[72]  Mario Berta,et al.  Thermodynamic Capacity of Quantum Processes. , 2018, Physical review letters.

[73]  R. Spinney,et al.  Entropy production from stochastic dynamics in discrete full phase space. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[74]  Koenraad M.R. Audenaert,et al.  Quantum skew divergence , 2013, 1304.5935.

[75]  M. Donald Further results on the relative entropy , 1987, Mathematical Proceedings of the Cambridge Philosophical Society.

[76]  R. Alicki Isotropic quantum spin channels and additivity questions , 2004, quant-ph/0402080.

[77]  Fluctuation theorems for quantum master equations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[78]  Massimiliano Esposito,et al.  Entropy production as correlation between system and reservoir , 2009, 0908.1125.

[79]  J Eisert,et al.  Second law of thermodynamics under control restrictions. , 2016, Physical review. E.

[80]  F. Hiai,et al.  Contraction coefficients for noisy quantum channels ∗ , 2015 .

[81]  C. Jarzynski Rare events and the convergence of exponentially averaged work values. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[82]  Jordan M. Horowitz,et al.  Quantum Fluctuation Theorems for Arbitrary Environments: Adiabatic and Nonadiabatic Entropy Production , 2017, Physical Review X.

[83]  Edward C. Posner,et al.  Random coding strategies for minimum entropy , 1975, IEEE Trans. Inf. Theory.

[84]  R. Spekkens,et al.  How to quantify coherence: Distinguishing speakable and unspeakable notions , 2016, 1602.08049.

[85]  D. Petz SUFFICIENCY OF CHANNELS OVER VON NEUMANN ALGEBRAS , 1988 .

[86]  K. Jacobs,et al.  Tradeoff between extractable mechanical work, accessible entanglement, and ability to act as a reference system, under arbitrary superselection rules , 2008 .

[87]  Gilad Gour,et al.  How to Quantify a Dynamical Quantum Resource. , 2019, Physical review letters.

[88]  D. Reeb,et al.  Monotonicity of the Quantum Relative Entropy Under Positive Maps , 2015, 1512.06117.

[89]  C. Jarzynski Equalities and Inequalities: Irreversibility and the Second Law of Thermodynamics at the Nanoscale , 2011 .

[90]  U. Seifert Stochastic thermodynamics, fluctuation theorems and molecular machines , 2012, Reports on progress in physics. Physical Society.

[91]  M. Esposito,et al.  Three faces of the second law. I. Master equation formulation. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[92]  T. Sagawa Thermodynamic and logical reversibilities revisited , 2013, 1311.1886.

[93]  Sebastian Deffner,et al.  Quantum Thermodynamics , 2019, 1907.01596.

[94]  David A. Sivak,et al.  Thermodynamic metrics and optimal paths. , 2012, Physical review letters.

[95]  Richard E Spinney,et al.  Entropy production in full phase space for continuous stochastic dynamics. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[96]  Miguel Navascués,et al.  Nonthermal Quantum Channels as a Thermodynamical Resource. , 2015, Physical review letters.

[97]  K. Funo,et al.  Quantum nonequilibrium equalities with absolute irreversibility , 2014, 1412.5891.