Purinergic Regulation of Transient Calcium-Dependent Chloride Current Ito2 in Rat Ventricular Myocardium

[1]  V. S. Kuz’min,et al.  Extracellular NAD+ Suppresses Adrenergic Effects in the Atrial Myocardium of Rats during the Early Postnatal Ontogeny , 2018, Bulletin of Experimental Biology and Medicine.

[2]  D. Abramochkin,et al.  Negative inotropic effects of diadenosine tetraphosphate are mediated by protein kinase C and phosphodiesterases stimulation in the rat heart , 2018, European journal of pharmacology.

[3]  D. Abramochkin,et al.  The role of diadenosine pentaphosphate and nicotinamide adenine dinucleotide (NAD+) as potential nucleotide comediators in the adrenergic regulation of cardiac function , 2017, Neurochemical Journal.

[4]  L. Csernoch,et al.  Sarcolemmal Ca(2+)-entry through L-type Ca(2+) channels controls the profile of Ca(2+)-activated Cl(-) current in canine ventricular myocytes. , 2016, Journal of molecular and cellular cardiology.

[5]  D. Abramochkin,et al.  Effects of Nicotinamide Adenine Dinucleotide (NAD+) and Diadenosine Tetraphosphate (Ap4A) on Electrical Activity of Working and Pacemaker Atrial Myocardium in Guinea Pigs , 2016, Bulletin of Experimental Biology and Medicine.

[6]  D. Abramochkin,et al.  Diadenosine tetra- and pentaphosphates affect contractility and bioelectrical activity in the rat heart via P2 purinergic receptors , 2016, Naunyn-Schmiedeberg's Archives of Pharmacology.

[7]  D. Abramochkin,et al.  Effects of diadenosine polyphosphates on inward rectifier potassium currents in rat cardiomyocytes , 2015, Moscow University Biological Sciences Bulletin.

[8]  Dongyang Huang,et al.  Characterization of the effects of Cl− channel modulators on TMEM16A and bestrophin-1 Ca2+ activated Cl− channels , 2015, Pflügers Archiv - European Journal of Physiology.

[9]  H. C. Hartzell,et al.  Characterization of Cardiac Anoctamin1 Ca2+‐Activated Chloride Channels and Functional Role in Ischemia‐Induced Arrhythmias , 2015, Journal of cellular physiology.

[10]  L. Durnin,et al.  The purinergic neurotransmitter revisited: a single substance or multiple players? , 2014, Pharmacology & therapeutics.

[11]  O. Bockeria,et al.  Ion channels and their role in the development of arrhythmias , 2014 .

[12]  N. Pedemonte,et al.  Structure and function of TMEM16 proteins (anoctamins). , 2014, Physiological reviews.

[13]  G. S. Sukhova,et al.  [Influence exogenous nicotinamide adenine dinucleotide (NAD+) on contractile and bioelectric activity of the rat heart]. , 2014, Rossiiskii fiziologicheskii zhurnal imeni I.M. Sechenova.

[14]  U. Oh,et al.  Anoctamin 1 Mediates Thermal Pain as a Heat Sensor , 2013, Current neuropharmacology.

[15]  R. Schreiber,et al.  Anoctamins are a family of Ca2+-activated Cl− channels , 2012, Journal of Cell Science.

[16]  G. Weisman,et al.  Coupling of P2Y receptors to G proteins and other signaling pathways. , 2012, Wiley interdisciplinary reviews. Membrane transport and signaling.

[17]  D. Abramochkin,et al.  Nitric oxide modulates intensity of non-quantal acetylcholine release in myocardium of the right atrium of rat , 2012, Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology.

[18]  D. Abramochkin,et al.  Nitric oxide modulates intensity of non-quantal acetylcholine release in myocardium of the right atrium of rat , 2012, Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology.

[19]  A. Gurney,et al.  A Ca2+‐dependent chloride current and Ca2+ influx via Cav1.2 ion channels play major roles in P2Y receptor‐mediated pulmonary vasoconstriction , 2012, British journal of pharmacology.

[20]  M. Rajagopal,et al.  Activation of P2Y1 and P2Y2 receptors induces chloride secretion via calcium-activated chloride channels in kidney inner medullary collecting duct cells. , 2011, American journal of physiology. Renal physiology.

[21]  A. Pogorelov,et al.  Does an electroneutral K+/Cl− antiport occur in cardiomyocyte during acute ischemia? , 2010 .

[22]  N. Leblanc,et al.  Functional properties of murine bestrophin 1 channel. , 2009, Biochemical and biophysical research communications.

[23]  V. Mutafova-Yambolieva,et al.  N-type and P/Q-type calcium channels regulate differentially the release of noradrenaline, ATP and β-NAD in blood vessels , 2009, Neuropharmacology.

[24]  N. Leblanc,et al.  Expression, localization, and functional properties of Bestrophin 3 channel isolated from mouse heart. , 2008, American journal of physiology. Cell physiology.

[25]  G. Burnstock,et al.  P2 receptors in cardiovascular regulation and disease , 2008, Purinergic Signalling.

[26]  N. Chiamvimonvat,et al.  Presence of a calcium-activated chloride current in mouse ventricular myocytes. , 2002, American journal of physiology. Heart and circulatory physiology.

[27]  S. Buvinic,et al.  P2Y1 and P2Y2 receptors are coupled to the NO/cGMP pathway to vasodilate the rat arterial mesenteric bed , 2002, British journal of pharmacology.

[28]  R. Ramirez,et al.  The molecular physiology of the cardiac transient outward potassium current (I(to)) in normal and diseased myocardium. , 2001, Journal of molecular and cellular cardiology.

[29]  K. Rahn,et al.  Diadenosine polyphosphates cause contraction and relaxation in isolated rat resistance arteries. , 2000, The Journal of pharmacology and experimental therapeutics.

[30]  D. Sheridan,et al.  The effects of diadenosine polyphosphates on the cardiovascular system. , 1999, Cardiovascular research.

[31]  S Kawano,et al.  Role of cardiac chloride currents in changes in action potential characteristics and arrhythmias. , 1998, Cardiovascular research.

[32]  J. Vishwanatha,et al.  Diadenosine polyphosphates: their biological and pharmacological significance. , 1995, Journal of pharmacological and toxicological methods.

[33]  A. Zygmunt,et al.  Properties of the calcium-activated chloride current in heart , 1992, The Journal of general physiology.

[34]  G. Isenberg,et al.  Calcium tolerant ventricular myocytes prepared by preincubation in a “KB medium” , 1982, Pflügers Archiv.

[35]  Rozenshtraukh Lv,et al.  Ionic Mechanisms of Action of Class III Antiarrhythmic Drugs , 2010 .

[36]  J. Eggermont Calcium-activated chloride channels: (un)known, (un)loved? , 2004, Proceedings of the American Thoracic Society.

[37]  H. Schlüter,et al.  Diadenosine polyphosphates as extracellular signal molecules , 2001 .