One‐Part Geopolymers Based on Thermally Treated Red Mud/NaOH Blends

In this study, one-part “just add water” geopolymer binders are synthesized through the alkali-thermal activation of the red mud which is relatively rich in both alumina and calcium. Calcination of the red mud with sodium hydroxide pellets at 800°C leads to decomposition of the original silicate and aluminosilicate phases present in the red mud, which promotes the formation of new compounds with hydraulic character, including a partially ordered peralkaline aluminosilicate phase and the calcium-rich phases C3A and α-C2S. The hydration of the “one-part geopolymer” leads to the formation of zeolites and a disordered binder gel as the main reaction products, and the consequent development of compressive strengths of up to 10 MPa after 7 d of curing. These results demonstrate that red mud is an effective precursor to produce one-part geopolymer binders, via thermal and alkali-activation processes.

[1]  V. Dondur,et al.  FTIR spectroscopy of framework aluminosilicate structures: carnegieite and pure sodium nepheline , 2003 .

[2]  N. R. Short,et al.  Pore solution chemistry of the hydrated system tricalcium silicate/sodium chloride/water , 1985 .

[3]  H. Jennings,et al.  Hydration of alkali-activated ground granulated blast furnace slag , 2000 .

[4]  J. Deventer,et al.  Evolution of Local Structure in Geopolymer Gels: An In Situ Neutron Pair Distribution Function Analysis , 2011 .

[5]  R. Slade,et al.  Dehydroxylation sequences of gibbsite and boehmite: study of differences between soak and flash calcination and of particle-size effects , 1996 .

[6]  J. Parise,et al.  Cancrinite: Crystal structure, phase transitions, and dehydration behavior with temperature , 2006 .

[7]  Yiannis Pontikes,et al.  Bauxite residue in cement and cementitious applications: Current status and a possible way forward , 2013 .

[8]  Xinyuan Ke,et al.  Influence of thermal treatment on phase transformation and dissolubility of aluminosilicate phase in red mud , 2012 .

[9]  J. Provis Geopolymers and other alkali activated materials: why, how, and what? , 2014 .

[10]  M. Flury,et al.  Mineral formation during simulated leaks of Hanford waste tanks , 2006 .

[11]  B. Mysen,et al.  Volatiles in silicate melts at high pressure and temperature: 2. Water in melts along the join NaAlO2SiO2 and a comparison of solubility mechanisms of water and fluorine , 1986 .

[12]  A. Atasoy The comparison of the bayer process wastes on the base of chemical and physical properties , 2007 .

[13]  J. Deventer,et al.  Effect of Alumina Release Rate on the Mechanism of Geopolymer Gel Formation , 2010 .

[14]  P. Fratzl,et al.  Gel structures containing Al(III) , 1999 .

[15]  Xinyuan Ke,et al.  Synthesis and Characterization of Geopolymer from Bayer Red Mud with Thermal Pretreatment , 2014 .

[16]  M. Vigasina,et al.  Cancrinite and cancrisilite in the Khibina-Lovozero alkaline complex: Thermochemical and thermal data , 2009 .

[17]  Paul F. McMillan,et al.  Structure of Calcium Silicate Hydrate (C‐S‐H): Near‐, Mid‐, and Far‐Infrared Spectroscopy , 2004 .

[18]  P. L. Pratt,et al.  Factors affecting the strength of alkali-activated slag , 1994 .

[19]  N. Zhang,et al.  Utilization of red mud in cement production: a review , 2011, Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA.

[20]  M. Flury,et al.  Alteration of Kaolinite to Cancrinite and Sodalite by Simulated Hanford Tank Waste and its Impact on Cesium Retention , 2004 .

[21]  Á. Palomo,et al.  Alkaline activation of metakaolin–fly ash mixtures: Obtain of Zeoceramics and Zeocements , 2008 .

[22]  J. Deventer,et al.  The effect of silica availability on the mechanism of geopolymerisation , 2011 .

[23]  I. Sunagawa,et al.  Nucleation, growth and stability of CaAl2Si2O8 polymorphs , 1991 .

[24]  A. Kremenović,et al.  Thermally induced phase transformations of Ca-exchanged LTA and FAU zeolite frameworks: Rietveld refinement of the hexagonal CaAl2Si2O8 diphyllosilicate structure , 1996 .

[25]  Hua Xu,et al.  Geopolymerisation of multiple minerals , 2002 .

[26]  P. Sieger,et al.  The hydrosodalite system Na6+x[SiAlO4]6(OH)x.cntdot.nH2O: formation, phase composition, and de- and rehydration studied by 1H, 23Na, and 29Si MAS-NMR spectroscopy in tandem with thermal analysis, x-ray diffraction, and IR spectroscopy , 1992 .

[27]  Ali Allahverdi,et al.  Efflorescence control in geopolymer binders based on natural pozzolan , 2012 .

[28]  A. K. Ray,et al.  Proposal for resources, utilization and processes of red mud in India — A review , 2013 .

[29]  Keun-Hyeok Yang,et al.  Workability Loss and Compressive Strength Development of Cementless Mortars Activated by Combination of Sodium Silicate and Sodium Hydroxide , 2009 .

[30]  Anja Buchwald,et al.  Demonstration Projects and Applications in Building and Civil Infrastructure , 2014 .

[31]  J. Ideker,et al.  Advances in alternative cementitious binders , 2011 .

[32]  A. Floren,et al.  ' " ' " ' " . " ' " " " " " ' " ' " " " " " : ' " 1 , 2001 .

[33]  X. Turrillas,et al.  Calcium aluminates hydration in presence of amorphous SiO2 at temperatures below 90 °C , 2006 .

[34]  Jian Yu,et al.  Properties and microstructure of the hardened alkali-activated red mud–slag cementitious material , 2003 .

[35]  An-xian Lu,et al.  Preparation and characterization of foam ceramics from red mud and fly ash using sodium silicate as foaming agent , 2013 .

[36]  John L. Provis,et al.  Thermal Activation of Albite for the Synthesis of One‐Part Mix Geopolymers , 2012 .

[37]  M. Sitarz,et al.  Identification of silicooxygen rings in SiO2 based on IR spectra. , 2000, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[38]  A. Jha,et al.  Phase Constitution During Sintering of Red Mud and Red Mud–Fly Ash Mixtures , 2005 .

[39]  J. Deventer,et al.  Understanding the relationship between geopolymer composition, microstructure and mechanical properties , 2005 .

[40]  B. Mysen,et al.  Volatiles in silicate melts at high pressure and temperature , 1986 .

[41]  J. Dever,et al.  Anhydrous sodium hydroxide: the heat content from 0 degrees to 700 degrees C, the transition temperature, and the melting point , 1954 .

[42]  X. Turrillas,et al.  Dehydration of Ca3Al2(SiO4)y(OH)4(3-y) (0 , 2008 .

[43]  John L. Provis,et al.  Chemical Research and Climate Change as Drivers in the Commercial Adoption of Alkali Activated Materials , 2010 .

[44]  J. Deventer,et al.  One-Part Geopolymer Mixes from Geothermal Silica and Sodium Aluminate , 2008 .

[45]  A. Alp,et al.  The influence of soda additive on the thermal properties of red mud , 2003 .

[46]  J. Deventer,et al.  Do Geopolymers Actually Contain Nanocrystalline Zeolites? A Reexamination of Existing Results , 2005 .

[47]  P. Steerenberg,et al.  Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.

[48]  R. R. Lloyd,et al.  Accelerated ageing of geopolymers , 2009 .

[49]  M. Lazzeri,et al.  First-principles study of the OH-stretching modes of gibbsite , 2006 .

[50]  N. Chukanov,et al.  Thermal evolution and thermochemistry of the cancrinite-group carbonate-oxalate mineral , 2011 .

[51]  J. Brus,et al.  Preparation, structure and hydrothermal stability of alternative (sodium silicate-free) geopolymers , 2007 .

[52]  Jay G. Sanjayan,et al.  Effect of admixtures on properties of alkali-activated slag concrete , 2000 .

[53]  J.-Ch. Buhl,et al.  Synthesis and characterization of the basic and non-basic members of the cancrinite-natrodavyne family , 1991 .

[54]  V. N. Misra,et al.  TRENDS IN RED MUD UTILIZATION – A REVIEW , 2004 .

[55]  C. Shi Corrosion resistance of alkali-activated slag cement , 2003 .

[56]  G. Cody,et al.  Solution mechanisms of H2O in depolymerized peralkaline melts , 2005 .

[57]  G. Power,et al.  Bauxite residue issues: III. Alkalinity and associated chemistry , 2011 .

[58]  J. Felsche,et al.  Phases and thermal decomposition characteristics of hydro-sodalites Na6+x,[AlSiO4]6,(OH)x·nH2O , 1987 .

[59]  S. Bernal,et al.  Geopolymers and Related Alkali-Activated Materials , 2014 .

[60]  I. Giannopoulou,et al.  UTILIZATION OF ALUMINA RED MUD FOR SYNTHESIS OF INORGANIC POLYMERIC MATERIALS , 2009 .

[61]  J. Provis,et al.  Designing Precursors for Geopolymer Cements , 2008 .

[62]  J. Buhl Synthesis and Characterization of the Basic and Non‐Basic Members of the Cancrinite‐Natrodavyne Family. , 1991 .

[63]  A. Wagh,et al.  Silicate bonded unsintered ceramics of Bayer process waste , 1991 .

[64]  W. Mozgawa,et al.  Vibrational spectroscopy of the amorphous silicates , 1993 .

[65]  Francisca Puertas,et al.  Effect of activator mix on the hydration and strength behaviour of alkali-activated slag cements , 2003 .

[66]  W. Kriven,et al.  Weakening of Alkali‐Activated Metakaolin During Aging Investigated by the Molybdate Method and Infrared Absorption Spectroscopy , 2010 .