Embedded exponential operator splitting methods for the time integration of nonlinear evolution equations

In this work, we introduce embedded exponential operator splitting methods for the adaptive time integration of nonlinear evolution equations. In the spirit of embedded Runge-Kutta methods, such pairs of related higher-order split-step methods provide estimates of the local error with moderate additional computational effort as substeps of the basic integrator are reused to obtain a local error estimator. As illustrations, we construct a split-step pair of orders 4(3) involving real method coefficients, tailored for nonlinear Schrodinger equations, and two order 4(3) split-step pairs with complex method coefficients, appropriate for nonlinear parabolic problems. Our theoretical investigations and numerical examples show that the splitting methods retain their orders of convergence when applied to evolution problems with sufficiently regular solutions. Furthermore, we demonstrate the ability of the new algorithms to serve as a reliable basis for error control in the time integration of nonlinear evolution equations by applying them to the solution of two model problems, the two-dimensional cubic Schrodinger equation with focusing singularity and a three-dimensional reaction-diffusion equation. Moreover, we demonstrate the advantages of our real embedded 4(3) pair of splitting methods over a pair of unrelated schemes for the time-dependent Gross-Pitaevskii equation.

[1]  Catherine Sulem,et al.  The nonlinear Schrödinger equation , 2012 .

[2]  R. Jackson Inequalities , 2007, Algebra for Parents.

[3]  J. Lambert Numerical Methods for Ordinary Differential Equations , 1991 .

[4]  E. Hairer,et al.  Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .

[5]  Mechthild Thalhammer,et al.  Error analysis of high-order splitting methods for nonlinear evolutionary Schrödinger equations and application to the MCTDHF equations in electron dynamics , 2013 .

[6]  Gustaf Söderlind,et al.  Automatic Control and Adaptive Time-Stepping , 2002, Numerical Algorithms.

[7]  G. Burton Sobolev Spaces , 2013 .

[8]  Mechthild Thalhammer,et al.  High-order time-splitting Hermite and Fourier spectral methods , 2009, J. Comput. Phys..

[9]  T. Cazenave Semilinear Schrodinger Equations , 2003 .

[10]  L. Gauckler,et al.  Convergence of a split-step Hermite method for the Gross–Pitaevskii equation , 2011 .

[11]  Mechthild Thalhammer,et al.  High-Order Exponential Operator Splitting Methods for Time-Dependent Schrödinger Equations , 2008, SIAM J. Numer. Anal..

[12]  Mechthild Thalhammer,et al.  Convergence Analysis of High-Order Time-Splitting Pseudospectral Methods for Nonlinear Schrödinger Equations , 2012, SIAM J. Numer. Anal..

[13]  乔花玲,et al.  关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .

[14]  Mechthild Thalhammer,et al.  Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part I: The linear case , 2012, J. Comput. Appl. Math..

[15]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[16]  H. Trotter On the product of semi-groups of operators , 1959 .

[17]  Gustaf Söderlind,et al.  Digital filters in adaptive time-stepping , 2003, TOMS.

[18]  Othmar Koch,et al.  Analysis of a defect correction method for geometric integrators , 2006, Numerical Algorithms.

[19]  Robert M. Corless,et al.  Adaptivity and computational complexity in the numerical solution of ODEs , 2008, J. Complex..

[20]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[21]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[22]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[23]  Fernando Casas,et al.  Optimized high-order splitting methods for some classes of parabolic equations , 2011, Math. Comput..

[24]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[25]  Gustaf Söderlind,et al.  Time-step selection algorithms: Adaptivity, control, and signal processing , 2006 .

[26]  A. Ostermann,et al.  High order splitting methods for analytic semigroups exist , 2009 .

[27]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[28]  Christian Lubich,et al.  On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations , 2008, Math. Comput..

[29]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[30]  C. Lubich,et al.  Error Bounds for Exponential Operator Splittings , 2000 .

[31]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[32]  Stéphane Descombes,et al.  Splitting methods with complex times for parabolic equations , 2009 .

[33]  A. Lunardi Analytic Semigroups and Optimal Regularity in Parabolic Problems , 2003 .

[34]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[35]  S. Descombes,et al.  An exact local error representation of exponential operator splitting methods for evolutionary problems and applications to linear Schrödinger equations in the semi-classical regime , 2010 .

[36]  G. Quispel,et al.  Acta Numerica 2002: Splitting methods , 2002 .