Embedded exponential operator splitting methods for the time integration of nonlinear evolution equations
暂无分享,去创建一个
[1] Catherine Sulem,et al. The nonlinear Schrödinger equation , 2012 .
[2] R. Jackson. Inequalities , 2007, Algebra for Parents.
[3] J. Lambert. Numerical Methods for Ordinary Differential Equations , 1991 .
[4] E. Hairer,et al. Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .
[5] Mechthild Thalhammer,et al. Error analysis of high-order splitting methods for nonlinear evolutionary Schrödinger equations and application to the MCTDHF equations in electron dynamics , 2013 .
[6] Gustaf Söderlind,et al. Automatic Control and Adaptive Time-Stepping , 2002, Numerical Algorithms.
[7] G. Burton. Sobolev Spaces , 2013 .
[8] Mechthild Thalhammer,et al. High-order time-splitting Hermite and Fourier spectral methods , 2009, J. Comput. Phys..
[9] T. Cazenave. Semilinear Schrodinger Equations , 2003 .
[10] L. Gauckler,et al. Convergence of a split-step Hermite method for the Gross–Pitaevskii equation , 2011 .
[11] Mechthild Thalhammer,et al. High-Order Exponential Operator Splitting Methods for Time-Dependent Schrödinger Equations , 2008, SIAM J. Numer. Anal..
[12] Mechthild Thalhammer,et al. Convergence Analysis of High-Order Time-Splitting Pseudospectral Methods for Nonlinear Schrödinger Equations , 2012, SIAM J. Numer. Anal..
[13] 乔花玲,et al. 关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .
[14] Mechthild Thalhammer,et al. Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part I: The linear case , 2012, J. Comput. Appl. Math..
[15] G. Strang. On the Construction and Comparison of Difference Schemes , 1968 .
[16] H. Trotter. On the product of semi-groups of operators , 1959 .
[17] Gustaf Söderlind,et al. Digital filters in adaptive time-stepping , 2003, TOMS.
[18] Othmar Koch,et al. Analysis of a defect correction method for geometric integrators , 2006, Numerical Algorithms.
[19] Robert M. Corless,et al. Adaptivity and computational complexity in the numerical solution of ODEs , 2008, J. Complex..
[20] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[21] F. A. Seiler,et al. Numerical Recipes in C: The Art of Scientific Computing , 1989 .
[22] R. Nagel,et al. One-parameter semigroups for linear evolution equations , 1999 .
[23] Fernando Casas,et al. Optimized high-order splitting methods for some classes of parabolic equations , 2011, Math. Comput..
[24] E. Hairer,et al. Solving Ordinary Differential Equations I , 1987 .
[25] Gustaf Söderlind,et al. Time-step selection algorithms: Adaptivity, control, and signal processing , 2006 .
[26] A. Ostermann,et al. High order splitting methods for analytic semigroups exist , 2009 .
[27] William H. Press,et al. Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .
[28] Christian Lubich,et al. On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations , 2008, Math. Comput..
[29] Daniel B. Henry. Geometric Theory of Semilinear Parabolic Equations , 1989 .
[30] C. Lubich,et al. Error Bounds for Exponential Operator Splittings , 2000 .
[31] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[32] Stéphane Descombes,et al. Splitting methods with complex times for parabolic equations , 2009 .
[33] A. Lunardi. Analytic Semigroups and Optimal Regularity in Parabolic Problems , 2003 .
[34] E. Hairer,et al. Solving Ordinary Differential Equations II , 2010 .
[35] S. Descombes,et al. An exact local error representation of exponential operator splitting methods for evolutionary problems and applications to linear Schrödinger equations in the semi-classical regime , 2010 .
[36] G. Quispel,et al. Acta Numerica 2002: Splitting methods , 2002 .