Semi-parametric modeling of excesses above high multivariate thresholds with censored data
暂无分享,去创建一个
[1] Simon Guillotte,et al. Non‐parametric Bayesian inference on bivariate extremes , 2009, 0911.3270.
[2] A. Raftery,et al. Strictly Proper Scoring Rules, Prediction, and Estimation , 2007 .
[3] Malcolm R Leadbetter,et al. Extremes and local dependence in stationary sequences , 1983 .
[4] J. Pickands. Statistical Inference Using Extreme Order Statistics , 1975 .
[5] Wendelin Schnedler,et al. Likelihood Estimation for Censored Random Vectors , 2005 .
[6] S. Coles,et al. An Introduction to Statistical Modeling of Extreme Values , 2001 .
[7] Gerda Claeskens,et al. Nonparametric Estimation , 2011, International Encyclopedia of Statistical Science.
[8] W. Wong,et al. The calculation of posterior distributions by data augmentation , 1987 .
[9] S. Resnick. Heavy-Tail Phenomena: Probabilistic and Statistical Modeling , 2006 .
[10] Richard L. Smith,et al. Models for exceedances over high thresholds , 1990 .
[11] D. Rubin,et al. Inference from Iterative Simulation Using Multiple Sequences , 1992 .
[12] J. R. Wallis,et al. Regional Frequency Analysis: An Approach Based on L-Moments , 1997 .
[13] L. Haan,et al. Nonparametric estimation of the spectral measure of an extreme value distribution , 2001 .
[14] Richard L. Smith,et al. Multivariate Threshold Methods , 1994 .
[15] L. Tierney. Markov Chains for Exploring Posterior Distributions , 1994 .
[16] A. Davison,et al. A comparative study of likelihood estimators for multivariate extremes , 2014 .
[17] Philip Heidelberger,et al. Simulation Run Length Control in the Presence of an Initial Transient , 1983, Oper. Res..
[18] A. SABOURIN,et al. Bayesian Dirichlet mixture model for multivariate extremes: A re-parametrization , 2014, Comput. Stat. Data Anal..
[19] S. Coles,et al. Modelling Extreme Multivariate Events , 1991 .
[20] Philippe Naveau,et al. A note of caution when interpreting parameters of the distribution of excesses , 2011 .
[21] A. Stephenson. Simulating Multivariate Extreme Value Distributions of Logistic Type , 2003 .
[22] Eric P. Smith,et al. An Introduction to Statistical Modeling of Extreme Values , 2002, Technometrics.
[23] Lei Si Ni Ke Resnick.S.I.. Extreme values. regular variation. and point processes , 2011 .
[24] A. Stephenson. HIGH‐DIMENSIONAL PARAMETRIC MODELLING OF MULTIVARIATE EXTREME EVENTS , 2009 .
[25] Thomas Opitz,et al. Efficient inference and simulation for elliptical Pareto processes , 2013, 1401.0168.
[26] J. Segers,et al. Maximum Empirical Likelihood Estimation of the Spectral Measure of an Extreme Value Distribution , 2008, 0812.3485.
[27] Richard L. Smith,et al. Markov chain models for threshold exceedances , 1997 .
[28] B. Renard,et al. Combining regional estimation and historical floods: A multivariate semiparametric peaks‐over‐threshold model with censored data , 2014, 1411.7782.
[29] P. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .
[30] Purushottam W. Laud,et al. Predictive Model Selection , 1995 .
[31] J. Teugels,et al. Statistics of Extremes , 2004 .
[32] S. Resnick. Extreme Values, Regular Variation, and Point Processes , 1987 .
[33] Anthony C. Davison,et al. A mixture model for multivariate extremes , 2007 .
[34] Michel Lang,et al. Flood frequency analysis using historical data: accounting for random and systematic errors , 2010 .
[35] J. Nolan,et al. Models for Dependent Extremes Using Stable Mixtures , 2007, 0711.2345.
[36] Xiao-Li Meng,et al. The Art of Data Augmentation , 2001 .
[37] A. Ledford,et al. Statistics for near independence in multivariate extreme values , 1996 .
[38] Evon M. O. Abu-Taieh,et al. Comparative Study , 2020, Definitions.
[39] A. O'Hagan,et al. The Calculation of Posterior Distributions by Data Augmentation: Comment , 1987 .
[40] Katherine Campbell,et al. Flood Frequency Analysis , 2001, Technometrics.
[41] Guadalupe Gómez,et al. Frequentist and Bayesian approaches for interval-censored data , 2004 .