Stochastic fatigue damage modeling under variable amplitude loading

Abstract A general methodology for stochastic fatigue life prediction under variable amplitude loading is proposed in this paper. The methodology combines a nonlinear fatigue damage accumulation rule and a stochastic S–N curve representation technique to achieve this objective. The nonlinear damage accumulation rule proposed in this paper improves the deficiencies inherent in the linear damage accumulation rule and still maintains its simplicity in the application. The covariance structure of the stochastic damage accumulation process under variable amplitude loading is included into the methodology by a new stochastic S–N curve approach. A wide range of fatigue data available in the literature is used to validate the proposed methodology, which covers different type of metallic materials under constant and variable amplitude loadings. The prediction results are also compared with existing fatigue models.

[1]  Pol D. Spanos,et al.  Markov chain models for life prediction of composite laminates , 1998 .

[2]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[3]  G. R. Halford,et al.  Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage , 1981 .

[4]  Kok-Kwang Phoon,et al.  Simulation of second-order processes using Karhunen–Loeve expansion , 2002 .

[5]  S. Suresh Fatigue of materials , 1991 .

[6]  Kok-Kwang Phoon,et al.  Convergence study of the truncated Karhunen–Loeve expansion for simulation of stochastic processes , 2001 .

[7]  Marcin Kamiński,et al.  On probabilistic fatigue models for composite materials , 2002 .

[8]  F. Kozin,et al.  Stochastic fatigue, fracture and damage analysis , 1986 .

[9]  David Cebon,et al.  Predicting fatigue lives for bi-modal stress spectral densities , 2000 .

[10]  Roberto Tovo A damage-based evaluation of probability density distribution for rain-flow ranges from random processes , 2000 .

[11]  Weixing Yao,et al.  A nonlinear damage cumulative model for uniaxial fatigue , 1999 .

[12]  Gary R. Halford Cumulative fatigue damage modeling-crack nucleation and early growth , 1997 .

[13]  Xu Xiaofei,et al.  Cumulative fatigue damage dynamic interference statistical model , 1995 .

[14]  Roger Ghanem,et al.  Stochastic Finite Elements with Multiple Random Non-Gaussian Properties , 1999 .

[15]  W. Van Paepegem,et al.  Effects of Load Sequence and Block Loading on the Fatigue Response of Fiber-Reinforced Composites , 2002 .

[16]  J. Polák,et al.  LOW CYCLE FATIGUE DAMAGE ACCUMULATION IN ARMCO-IRON , 1991 .

[17]  Hongwei Shen,et al.  Probabilistic model on stochastic fatigue damage , 2000 .

[18]  M. Kawai,et al.  Two-stress level fatigue of unidirectional fiber–metal hybrid composite: GLARE 2 , 2002 .

[19]  Michel Loève,et al.  Probability Theory I , 1977 .

[20]  William Q. Meeker,et al.  Estimating Fatigue Curves With the Random Fatigue-Limit Model , 1999, Technometrics.

[21]  Kan Ni,et al.  Fatigue reliability analysis under two-stage loading , 2000, Reliab. Eng. Syst. Saf..

[22]  Guoyang Jiao,et al.  A theoretical model for the prediction of fatigue under combined Gaussian and impact loads , 1995 .

[23]  Xiaobin Le,et al.  A method for fatigue based reliability when the loading of a component is unknown , 1999 .

[24]  Tai-Yan Kam,et al.  FATIGUE RELIABILITY EVALUATION FOR COMPOSITE LAMINATES VIA A DIRECT NUMERICAL INTEGRATION TECHNIQUE , 1998 .

[25]  M. Ichikawa,et al.  A probabilistic investigation of fatigue life and cumulative cycle ratio , 1984 .

[26]  Ali Fatemi,et al.  Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials , 1998 .

[27]  X.-L. Zheng,et al.  Prediction of fatigue life and its probability distribution of notched friction welded joints under variable-amplitude loading , 2000 .

[28]  H. Saunders,et al.  Probabilistic models of cumulative damage , 1985 .

[29]  V. A. Kopnov A randomized endurance limit in fatigue damage accumulation models , 1993 .

[30]  Liyang Xie Equivalent life distribution and fatigue failure probability prediction , 1999 .

[31]  M. Shinozuka,et al.  Simulation of Stochastic Processes by Spectral Representation , 1991 .

[32]  V. A. Kopnov Intrinsic fatigue curves applied to damage evaluation and life prediction of laminate and fabric material , 1997 .

[33]  Mr. Eric Goodin,et al.  Evaluation of Nonlinear Cumulative Damage Models for Assessing HCF / LCF Interactions in Multiaxial Loadings , 2006 .

[34]  E. W. C. Wilkins,et al.  Cumulative damage in fatigue , 1956 .

[35]  Alan Plumtree,et al.  A fatigue damage accumulation model based on continuum damage mechanics and ductility exhaustion , 1998 .

[36]  Adam Niesłony,et al.  Fatigue life under non-Gaussian random loading from various models , 2004 .

[37]  X.-L. Zheng,et al.  On the prediction of P–S–N curves of 45 steel notched elements and probability distribution of fatigue life under variable amplitude loading from tensile properties , 2005 .

[38]  G. R. Halford,et al.  Reexamination of Cumulative Fatigue Damage Laws , 1985 .

[39]  D. Benasciutti,et al.  Spectral methods for lifetime prediction under wide-band stationary random processes , 2005 .

[40]  Toshiyuki Shimokawa,et al.  A statistical consideration of Miner's rule , 1980 .

[41]  Mircea Grigoriu,et al.  On the spectral representation method in simulation , 1993 .