Automatic Inference of the Quantile Parameter
暂无分享,去创建一个
[1] G. Pillonetto,et al. An $\ell _{1}$-Laplace Robust Kalman Smoother , 2011, IEEE Transactions on Automatic Control.
[2] R. Tyrrell Rockafellar,et al. Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.
[3] Hui Zou,et al. Computational Statistics and Data Analysis Regularized Simultaneous Model Selection in Multiple Quantiles Regression , 2022 .
[4] Songfeng Zheng,et al. QBoost: Predicting quantiles with boosting for regression and binary classification , 2012, Expert Syst. Appl..
[5] Stephen P. Boyd,et al. Smoothed state estimates under abrupt changes using sum-of-norms regularization , 2012, Autom..
[6] Moshe Buchinsky. CHANGES IN THE U.S. WAGE STRUCTURE 1963-1987: APPLICATION OF QUANTILE REGRESSION , 1994 .
[7] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[8] R. Koenker. Quantile Regression: Fundamentals of Quantile Regression , 2005 .
[9] Junbin Gao,et al. Robust L1 Principal Component Analysis and Its Bayesian Variational Inference , 2008, Neural Computation.
[10] Aleksandr Y. Aravkin,et al. Estimating nuisance parameters in inverse problems , 2012, 1206.6532.
[11] R. Koenker,et al. Reappraising Medfly Longevity , 2001 .
[12] R. Koenker,et al. Regression Quantiles , 2007 .
[13] B. Ripley,et al. Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.
[14] Trevor Hastie,et al. The Elements of Statistical Learning , 2001 .
[15] Ronny Luss,et al. Orthogonal Matching Pursuit for Sparse Quantile Regression , 2014, 2014 IEEE International Conference on Data Mining.
[16] Georgios B. Giannakis,et al. Doubly Robust Smoothing of Dynamical Processes via Outlier Sparsity Constraints , 2011, IEEE Transactions on Signal Processing.
[17] Robert Tibshirani,et al. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.
[18] J. Friedman. Greedy function approximation: A gradient boosting machine. , 2001 .