GeneSPIDER - Generation and Simulation Package for Informative Data ExploRation
暂无分享,去创建一个
Erik L. L. Sonnhammer | Torbjörn E. M. Nordling | Andreas Tjärnberg | Daniel Morgan | Matthew Studham | E. Sonnhammer | Andreas Tjärnberg | D. Morgan | Matthew Studham
[1] Diego di Bernardo,et al. Robust Identification of Large Genetic Networks , 2003, Pacific Symposium on Biocomputing.
[2] Claudio Cobelli,et al. A Gene Network Simulator to Assess Reverse Engineering Algorithms , 2009, Annals of the New York Academy of Sciences.
[3] Sandro Macchietto,et al. Model-based design of experiments for parameter precision: State of the art , 2008 .
[4] J. Collins,et al. Inferring Genetic Networks and Identifying Compound Mode of Action via Expression Profiling , 2003, Science.
[5] Torbjörn E. M. Nordling,et al. Interampatteness - a generic property of biochemical networks. , 2009, IET systems biology.
[6] P. Erdos,et al. On the evolution of random graphs , 1984 .
[7] Jesper Tegnér,et al. Reverse engineering gene networks using singular value decomposition and robust regression , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[8] Stephen P. Boyd,et al. Inferring stable genetic networks from steady-state data , 2011, Autom..
[9] R. Tibshirani,et al. Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.
[10] Torbjörn E. M. Nordling,et al. Robust Inference of Gene Regulatory Networks , 2012, ICONS 2012.
[11] M. Gustafsson,et al. Constructing and analyzing a large-scale gene-to-gene regulatory network Lasso-constrained inference and biological validation , 2005, IEEE/ACM Transactions on Computational Biology and Bioinformatics.
[12] Ralf Herwig,et al. GeNGe: systematic generation of gene regulatory networks , 2009, Bioinform..
[13] Christopher A. Penfold,et al. How to infer gene networks from expression profiles, revisited , 2011, Interface Focus.
[14] Kathleen Marchal,et al. SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms , 2006, BMC Bioinformatics.
[15] Dario Floreano,et al. GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods , 2011, Bioinform..
[16] Diogo M. Camacho,et al. Wisdom of crowds for robust gene network inference , 2012, Nature Methods.
[17] Torbjörn E. M. Nordling,et al. Avoiding pitfalls in L1-regularised inference of gene networks. , 2015, Molecular bioSystems.
[18] Ralf Herwig,et al. Reverse Engineering of Gene Regulatory Networks: A Comparative Study , 2009, EURASIP J. Bioinform. Syst. Biol..
[19] Catarina Costa,et al. The YEASTRACT database: an upgraded information system for the analysis of gene and genomic transcription regulation in Saccharomyces cerevisiae , 2013, Nucleic Acids Res..
[20] J. Timmer,et al. Systems biology: experimental design , 2009, The FEBS journal.
[21] Pio Forzatti,et al. Sequential experimental design for model discrimination in the case of multiple responses , 1984 .
[22] Erik L. L. Sonnhammer,et al. Optimal Sparsity Criteria for Network Inference , 2013, J. Comput. Biol..
[23] J. Hasty,et al. Reverse engineering gene networks: Integrating genetic perturbations with dynamical modeling , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[24] Mark D. McDonnell,et al. Methods for Generating Complex Networks with Selected Structural Properties for Simulations: A Review and Tutorial for Neuroscientists , 2011, Front. Comput. Neurosci..
[25] George J. Pappas,et al. Genetic network identification using convex programming. , 2009, IET systems biology.
[26] Sean C. Warnick,et al. Robust dynamical network structure reconstruction , 2011, Autom..
[27] Michael Hecker,et al. Gene regulatory network inference: Data integration in dynamic models - A review , 2009, Biosyst..
[28] Trevor Hastie,et al. Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.
[29] Duncan J. Watts,et al. Collective dynamics of ‘small-world’ networks , 1998, Nature.
[30] Wolfgang Marquardt,et al. Optimal Experimental Design for Discriminating Numerous Model Candidates: The AWDC Criterion , 2010 .
[31] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[32] Peng Zhao,et al. On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..
[33] N. Lytkin,et al. A comprehensive assessment of methods for de-novo reverse-engineering of genome-scale regulatory networks. , 2011, Genomics.
[34] Julio Collado-Vides,et al. RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more , 2012, Nucleic Acids Res..
[35] Mika Gustafsson,et al. Gene Expression Prediction by Soft Integration and the Elastic Net—Best Performance of the DREAM3 Gene Expression Challenge , 2010, PloS one.