GeneSPIDER - Generation and Simulation Package for Informative Data ExploRation

A range of tools are available to model, simulate and analyze gene regulatory networks (GRNs). However, these tools provide limited ability to control network topology, system dynamics, design of e ...

[1]  Diego di Bernardo,et al.  Robust Identification of Large Genetic Networks , 2003, Pacific Symposium on Biocomputing.

[2]  Claudio Cobelli,et al.  A Gene Network Simulator to Assess Reverse Engineering Algorithms , 2009, Annals of the New York Academy of Sciences.

[3]  Sandro Macchietto,et al.  Model-based design of experiments for parameter precision: State of the art , 2008 .

[4]  J. Collins,et al.  Inferring Genetic Networks and Identifying Compound Mode of Action via Expression Profiling , 2003, Science.

[5]  Torbjörn E. M. Nordling,et al.  Interampatteness - a generic property of biochemical networks. , 2009, IET systems biology.

[6]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[7]  Jesper Tegnér,et al.  Reverse engineering gene networks using singular value decomposition and robust regression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Stephen P. Boyd,et al.  Inferring stable genetic networks from steady-state data , 2011, Autom..

[9]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[10]  Torbjörn E. M. Nordling,et al.  Robust Inference of Gene Regulatory Networks , 2012, ICONS 2012.

[11]  M. Gustafsson,et al.  Constructing and analyzing a large-scale gene-to-gene regulatory network Lasso-constrained inference and biological validation , 2005, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[12]  Ralf Herwig,et al.  GeNGe: systematic generation of gene regulatory networks , 2009, Bioinform..

[13]  Christopher A. Penfold,et al.  How to infer gene networks from expression profiles, revisited , 2011, Interface Focus.

[14]  Kathleen Marchal,et al.  SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms , 2006, BMC Bioinformatics.

[15]  Dario Floreano,et al.  GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods , 2011, Bioinform..

[16]  Diogo M. Camacho,et al.  Wisdom of crowds for robust gene network inference , 2012, Nature Methods.

[17]  Torbjörn E. M. Nordling,et al.  Avoiding pitfalls in L1-regularised inference of gene networks. , 2015, Molecular bioSystems.

[18]  Ralf Herwig,et al.  Reverse Engineering of Gene Regulatory Networks: A Comparative Study , 2009, EURASIP J. Bioinform. Syst. Biol..

[19]  Catarina Costa,et al.  The YEASTRACT database: an upgraded information system for the analysis of gene and genomic transcription regulation in Saccharomyces cerevisiae , 2013, Nucleic Acids Res..

[20]  J. Timmer,et al.  Systems biology: experimental design , 2009, The FEBS journal.

[21]  Pio Forzatti,et al.  Sequential experimental design for model discrimination in the case of multiple responses , 1984 .

[22]  Erik L. L. Sonnhammer,et al.  Optimal Sparsity Criteria for Network Inference , 2013, J. Comput. Biol..

[23]  J. Hasty,et al.  Reverse engineering gene networks: Integrating genetic perturbations with dynamical modeling , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Mark D. McDonnell,et al.  Methods for Generating Complex Networks with Selected Structural Properties for Simulations: A Review and Tutorial for Neuroscientists , 2011, Front. Comput. Neurosci..

[25]  George J. Pappas,et al.  Genetic network identification using convex programming. , 2009, IET systems biology.

[26]  Sean C. Warnick,et al.  Robust dynamical network structure reconstruction , 2011, Autom..

[27]  Michael Hecker,et al.  Gene regulatory network inference: Data integration in dynamic models - A review , 2009, Biosyst..

[28]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[29]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[30]  Wolfgang Marquardt,et al.  Optimal Experimental Design for Discriminating Numerous Model Candidates: The AWDC Criterion , 2010 .

[31]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[32]  Peng Zhao,et al.  On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..

[33]  N. Lytkin,et al.  A comprehensive assessment of methods for de-novo reverse-engineering of genome-scale regulatory networks. , 2011, Genomics.

[34]  Julio Collado-Vides,et al.  RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more , 2012, Nucleic Acids Res..

[35]  Mika Gustafsson,et al.  Gene Expression Prediction by Soft Integration and the Elastic Net—Best Performance of the DREAM3 Gene Expression Challenge , 2010, PloS one.