Subquantum nonlocal correlations induced by the background random field
暂无分享,去创建一个
[1] A. Khrennikov. Quantum correlations and dynamics from classical random fields valued in complex Hilbert spaces , 2010 .
[2] Andrei Khrennikov,et al. Correlations of components of prequantum field corresponding to biparticle quantum system , 2010 .
[3] Andrei Khrennikov,et al. Entanglement's dynamics from classical stochastic process , 2009 .
[4] Stephen M. Barnett,et al. Quantum information , 2005, Acta Physica Polonica A.
[5] H. Elze. Symmetry aspects in emergent quantum mechanics , 2009 .
[6] C. Garola,et al. The ESR model: A proposal for a noncontextual and local Hilbert space extension of QM , 2009 .
[7] Andrei Khrennikov. Born's rule from classical random fields , 2008 .
[8] H. Elze. Is there a relativistic nonlinear generalization of quantum mechanics? , 2007, 0704.2559.
[9] A. Khrennikov. Nonlinear Schrödinger equations from prequantum classical statistical field theory , 2006, quant-ph/0602210.
[10] V. Man'ko,et al. A probabilistic operator symbol framework for quantum information , 2006, quant-ph/0602189.
[11] Arkady Plotnitsky,et al. Reading Bohr: Physics and Philosophy , 2006 .
[12] A. Khrennikov. A pre-quantum classical statistical model with infinite-dimensional phase space , 2005, quant-ph/0505228.
[13] Harald Atmanspacher,et al. Epistemic and Ontic Quantum Realities , 2003 .
[14] V. I. Man'ko,et al. A Charged Particle in an Electric Field in the Probability Representation of Quantum Mechanics , 2001 .
[15] H. F. Hofmann. Quantum Noise and Spontaneous Emission in Semiconductor Laser Devices , 1999 .
[16] V. I. Man'ko,et al. Classical formulation of quantum mechanics , 1996 .
[17] Mark P. Davidson,et al. A model for the stochastic origins of Schrödinger’s equation , 1979, quant-ph/0112157.
[18] Alfred Landé,et al. New Foundations of Quantum Mechanics , 1966 .
[19] J. Patterson. DENSITY MATRIX REPRESENTATIONS , 1962 .
[20] E. R. Cohen,et al. Foundations of Quantum Theory , 1957 .
[21] A. Kolmogoroff. Grundbegriffe der Wahrscheinlichkeitsrechnung , 1933 .