On Borsuk’s Conjecture for Two-Distance Sets

In this paper, we answer Larman’s question on Borsuk’s conjecture for two-distance sets. We find a two-distance set consisting of 416 points on the unit sphere $S^{64}\subset\mathbb{R}^{65}$ which cannot be partitioned into 83 parts of smaller diameter. This also reduces the smallest dimension in which Borsuk’s conjecture is known to be false. Other examples of two-distance sets with large Borsuk numbers are given.

[1]  О размерности в проблеме Борсука@@@On the dimension in Borsuk's problem , 1997 .

[2]  Noga Alon Discrete Mathematics: Methods and Challenges , 2002 .

[3]  A. Hora,et al.  Distance-Regular Graphs , 2007 .

[4]  A. Raigorodskii Around Borsuk’s hypothesis , 2008 .

[5]  M. Aigner,et al.  Proofs from "The Book" , 2001 .

[6]  János Pach,et al.  Research problems in discrete geometry , 2005 .

[7]  D. Leemans A Family of Geometries Related to the Suzuki Tower , 2005 .

[8]  Chuanming Zong,et al.  Borsuk’s Problem , 1996 .

[9]  Karol Borsuk Drei Sätze über die n-dimensionale euklidische Sphäre , 1933 .

[10]  Peter J. Cameron,et al.  Strongly regular graphs , 2003 .

[11]  Aicke Hinrichs Spherical codes and Borsuk's conjecture , 2002, Discret. Math..

[12]  John Bamberg,et al.  Intriguing sets in partial quadrangles , 2008, 0812.2871.

[13]  Robert L. Griess,et al.  Twelve Sporadic Groups , 1998 .

[14]  Oleg Pikhurko Borsuk's Conjecture Fails in Dimensions 321 and 322 , 2002 .

[15]  J. Kahn,et al.  A counterexample to Borsuk's conjecture , 1993, math/9307229.

[16]  Aicke Hinrichs,et al.  New sets with large Borsuk numbers , 2003, Discrete Mathematics.

[17]  Dmitrii V. Pasechnik Geometric Characterization of the Sporadic Groups Fi22, Fi23, and Fi24 , 1994, J. Comb. Theory, Ser. A.

[18]  A. M. Raigorodski On Borsuk's problem , 1997 .

[19]  Thomas Jenrich A 64-dimensional two-distance counterexample to Borsuk's conjecture , 2013 .