New method for determining search directions for interior-point algorithms in linear optimization

We introduce an interior-point algorithm for linear optimization, which is based on a new technique for determining search directions. This method consists of a new type of transformation on the centering equations of the system which characterizes the central path. It can be shown that these new directions cannot be derived from usual kernel functions. Therefore, we extend the concept of the kernel functions, and we establish an equivalence between this approach and the proposed method for obtaining search directions. Moreover, we prove the polynomial complexity of the algorithm.

[1]  B. Jansen,et al.  The theory of linear programming:skew symmetric self-dual problems and the central path * , 1994 .

[2]  T. Terlaky A convergent criss-cross method , 1985 .

[3]  Tamás Terlaky,et al.  An easy way to teach interior-point methods , 2001, Eur. J. Oper. Res..

[4]  Yan-Qin Bai,et al.  A new primal-dual path-following interior-point algorithm for semidefinite optimization , 2009 .

[5]  Hossein Mansouri,et al.  Polynomial interior-point algorithm for P*${(\kappa)}$ horizontal linear complementarity problems , 2012, Numerical Algorithms.

[6]  Shuzhong Zhang,et al.  An O(\sqrtn L) Iteration Primal-dual Path-following Method, Based on Wide Neighborhoods and Large Updates, for Monotone LCP , 2005, SIAM J. Optim..

[7]  Jiming Peng,et al.  Primal-Dual Interior-Point Methods for Second-Order Conic Optimization Based on Self-Regular Proximities , 2002, SIAM J. Optim..

[8]  Tibor Illés,et al.  A polynomial path-following interior point algorithm for general linear complementarity problems , 2010, J. Glob. Optim..

[9]  Mohamed Achache,et al.  Complexity analysis and numerical implementation of a short-step primal-dual algorithm for linear complementarity problems , 2010, Appl. Math. Comput..

[10]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[11]  G. Q. Wang,et al.  A New Polynomial Interior-Point Algorithm for the Monotone Linear complementarity Problem over Symmetric cones with Full NT-Steps , 2012, Asia Pac. J. Oper. Res..

[12]  Kees Roos,et al.  A Comparative Study of Kernel Functions for Primal-Dual Interior-Point Algorithms in Linear Optimization , 2004, SIAM J. Optim..

[13]  Tibor Illés,et al.  Polynomial Interior Point Algorithms for General Linear Complementarity Problems , 2010, Algorithmic Oper. Res..

[14]  Florian A Potra,et al.  A superlinearly convergent predictor-corrector method for degenerate LCP in a wide neighborhood of the central path with $$O(\sqrt{n}L)$$-iteration complexity , 2007, Math. Program..

[15]  Zsolt Darvay,et al.  Complexity analysis of a full-Newton step interior-point method for linear optimization , 2016, Periodica Mathematica Hungarica.

[16]  Kees Roos,et al.  A New Efficient Large-Update Primal-Dual Interior-Point Method Based on a Finite Barrier , 2002, SIAM J. Optim..

[17]  Florian A. Potra,et al.  Predictor-corrector algorithm for solvingP*(κ)-matrix LCP from arbitrary positive starting points , 1996, Math. Program..

[18]  Lipu Zhang,et al.  A full-Newton step interior-point algorithm based on modified-Newton direction , 2011, J. Softw..

[19]  Yan-Qin Bai,et al.  A New Full Nesterov–Todd Step Primal–Dual Path-Following Interior-Point Algorithm for Symmetric Optimization , 2012, Journal of Optimization Theory and Applications.

[20]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[21]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..

[22]  Mohamed Achache,et al.  A new primal-dual path-following method for convex quadratic programming , 2006 .

[23]  Florian A. Potra,et al.  A superlinearly convergent predictor-corrector method for degenerate LCP in a wide neighborhood of the central path with -iteration complexity , 2004, Math. Program..

[24]  Zsolt Darvay New Interior Point Algorithms in Linear Programming , 2003 .

[25]  Yan-Qin Bai,et al.  Polynomial interior-point algorithms for P*(k) horizontal linear complementarity problem , 2009, J. Comput. Appl. Math..

[26]  Yanqin Bai,et al.  A new primal-dual path-following interior-point algorithm for linearly constrained convex optimization , 2008 .

[27]  Yang Li,et al.  A New Class of Large Neighborhood Path-Following Interior Point Algorithms for Semidefinite Optimization with O(√n log (Tr(X0S0)/ε)) Iteration Complexity , 2010, SIAM J. Optim..

[28]  Shinji Mizuno,et al.  An O(√nL)-Iteration Homogeneous and Self-Dual Linear Programming Algorithm , 1994, Math. Oper. Res..

[29]  Nimrod Megiddo,et al.  A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems , 1991, Lecture Notes in Computer Science.

[30]  Hossein Mansouri,et al.  A Path-Following Infeasible Interior-Point Algorithm for Semidefinite Programming , 2012 .

[31]  Hossein Mansouri,et al.  A Polynomial Interior-Point Algorithm for Monotone Linear Complementarity Problems , 2013, J. Optim. Theory Appl..

[32]  Yan-Qin Bai,et al.  A primal-dual interior-point algorithm for second-order cone optimization with full Nesterov-Todd step , 2009, Appl. Math. Comput..

[33]  Jacek Gondzio,et al.  Implementation of Interior Point Methods for Large Scale Linear Programming , 1996 .

[34]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[35]  Zsolt Darvay A NEW ALGORITHM FOR SOLVING SELF-DUAL LINEAR OPTIMIZATION PROBLEMS , 2002 .

[36]  M. Reza Peyghami,et al.  Complexity analysis of an interior-point algorithm for linear optimization based on a new proximity function , 2014, Numerical Algorithms.

[37]  Behrouz Kheirfam A predictor-corrector interior-point algorithm for P∗(κ)$P_{*}(\kappa )$-horizontal linear complementarity problem , 2013, Numerical Algorithms.

[38]  Tibor Illés,et al.  Pivot versus interior point methods: Pros and cons , 2002, Eur. J. Oper. Res..

[39]  Florian A. Potra,et al.  A Large-Step Infeasible-Interior-Point Method for the P*-Matrix LCP , 1997, SIAM J. Optim..

[40]  G. Sonnevend An "analytical centre" for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming , 1986 .

[41]  E. Klafszky,et al.  Some generalizations of the criss-cross method for the linear complementarity problem of oriented matroids , 1989, Comb..

[42]  T. Terlaky,et al.  EP Theorem for Dual Linear Complementarity Problems , 2009 .

[43]  Yinyu Ye,et al.  Interior point algorithms: theory and analysis , 1997 .