Electro-Optically Tunable Multifunctional Metasurfaces.

Shaping the flow of light at the nanoscale is a grand challenge for nanophotonics. It is now widely recognized that metasurfaces represent a chip-scale nanophotonics array technology capable of comprehensively controlling the wave front of light via appropriately configuring subwavelength antenna elements. Here, we demonstrate a reconfigurable metasurface that is multifunctional, i.e., notionally capable of providing diverse optical functions in the telecommunication wavelength regime, using a single compact, lightweight, electronically programmable array with no moving parts. By electro-optical control of the phase of light reflected from each identical element in a metasurface antenna array, we demonstrate a prototype programmable metasurface that is capable of both dynamic beam steering and reconfigurable light focusing. This powerful concept allows the programmer to create new functions, alter and improve existing functions, and toggle temporally between functions using a single device. Thus, reconfigurable multifunctional metasurfaces with arrays of tunable optical antennas can perform arbitrary optical functions by programmable array-level control of scattered light phase, amplitude, and polarization, similar to dynamic and programmable logic and memories in electronics.

[1]  T. Low,et al.  Complete Complex Amplitude Modulation with Electronically Tunable Graphene Plasmonic Metamolecules. , 2020, ACS nano.

[2]  Hossein Mosallaei,et al.  Electro-optical Amplitude and Phase Modulators Based on Tunable Guided-Mode Resonance Effect , 2019, ACS Photonics.

[3]  O. Miller,et al.  Tunable metasurface inverse design for 80% switching efficiencies and 144$^\circ$ angular steering , 2019, 1910.03132.

[4]  Wen-Hui Cheng,et al.  Dynamic beam steering with all-dielectric electro-optic III–V multiple-quantum-well metasurfaces , 2019, Nature Communications.

[5]  H. Cui,et al.  Liquid metal metasurface for flexible beam-steering. , 2019, Optics express.

[6]  Vladimir M. Shalaev,et al.  Spatiotemporal light control with frequency-gradient metasurfaces , 2019, Science.

[7]  Jianji Yang,et al.  High-efficiency, large-area, topology-optimized metasurfaces , 2019, Light: Science & Applications.

[8]  Pin Chieh Wu,et al.  Phase Modulation with Electrically Tunable Vanadium Dioxide Phase-Change Metasurfaces. , 2019, Nano letters.

[9]  C. Palmstrøm,et al.  III–V Heterojunction Platform for Electrically Reconfigurable Dielectric Metasurfaces , 2019, ACS Photonics.

[10]  Vladimir M. Shalaev,et al.  Spatiotemporal light control with active metasurfaces , 2019, Science.

[11]  Jonathan A. Fan,et al.  Review of numerical optimization techniques for meta-device design [Invited] , 2019, Optical Materials Express.

[12]  A. H. Naqvi,et al.  A Beam-Steering Antenna With a Fluidically Programmable Metasurface , 2019, IEEE Transactions on Antennas and Propagation.

[13]  C. H. Chu,et al.  Achromatic metalens array for full-colour light-field imaging , 2019, Nature Nanotechnology.

[14]  H. Atwater,et al.  Tunable all-dielectric metasurface for phase modulation of the reflected and transmitted light via permittivity tuning of indium tin oxide , 2019, Nanophotonics.

[15]  Shi-Qiang Li,et al.  Phase-only transmissive spatial light modulator based on tunable dielectric metasurface , 2019, Science.

[16]  Zhao Yang,et al.  Wave front control with SLM and simulation of light wave diffraction. , 2018, Optics express.

[17]  Ioannis Tomkos,et al.  Free Space Intra-Datacenter Interconnects Based on 2D Optical Beam Steering Enabled by Photonic Integrated Circuits , 2018, Photonics.

[18]  H. Mosallaei,et al.  Adaptive Genetic Algorithm for Optical Metasurfaces Design , 2018, Scientific Reports.

[19]  Din Ping Tsai,et al.  Metalenses: Advances and Applications , 2018, Advanced Optical Materials.

[20]  A. Majumdar,et al.  Ultrathin van der Waals Metalenses. , 2018, Nano letters.

[21]  Ivan I. Kravchenko,et al.  Dynamic transmission control based on all-dielectric Huygens metasurfaces , 2018, Optica.

[22]  Arka Majumdar,et al.  Varifocal zoom imaging with large area focal length adjustable metalenses , 2018, Optica.

[23]  S. Skirlo,et al.  Planar-lens Enabled Beam Steering for Chip-scale LIDAR , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[24]  H. Atwater,et al.  Dual-Gated Active Metasurface at 1550 nm with Wide (>300°) Phase Tunability. , 2018, Nano letters.

[25]  Bo Han Chen,et al.  A broadband achromatic metalens in the visible , 2018, Nature Nanotechnology.

[26]  C. David Wright,et al.  Nonvolatile Reconfigurable Phase‐Change Metadevices for Beam Steering in the Near Infrared , 2018 .

[27]  Zongfu Yu,et al.  Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures , 2017, 2019 Conference on Lasers and Electro-Optics (CLEO).

[28]  Zhihua Zhu,et al.  Dynamically Reconfigurable Metadevice Employing Nanostructured Phase-Change Materials. , 2017, Nano letters.

[29]  Harry A. Atwater,et al.  Millivolt Modulation of Plasmonic Metasurface Optical Response via Ionic Conductance , 2017, Advanced materials.

[30]  Michael B. Sinclair,et al.  Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber , 2017, Nature Photonics.

[31]  C. H. Chu,et al.  Fundamentals and Applications of Metasurfaces , 2017 .

[32]  C. W. Oh,et al.  Free-space transmission with passive two-dimensional beam steering for indoor optical wireless networks , 2017 .

[33]  Yuri S. Kivshar,et al.  Electrically tunable all-dielectric optical metasurfaces based on liquid crystals , 2017 .

[34]  Wei Ting Chen,et al.  Achromatic metalens over 60 nm bandwidth in the visible , 2017, 2017 Conference on Lasers and Electro-Optics (CLEO).

[35]  M. Brongersma,et al.  Dynamic Reflection Phase and Polarization Control in Metasurfaces. , 2017, Nano letters.

[36]  Prasad P. Iyer,et al.  Electrically Reconfigurable Metasurfaces Using Heterojunction Resonators , 2016 .

[37]  R. Agarwal,et al.  Tunable Metasurface and Flat Optical Zoom Lens on a Stretchable Substrate. , 2016, Nano letters.

[38]  D. Tsai,et al.  Gate-Tunable Conducting Oxide Metasurfaces. , 2015, Nano letters.

[39]  Hong Cai,et al.  A Flat Lens with Tunable Phase Gradient by Using Random Access Reconfigurable Metamaterial , 2015, Advanced materials.

[40]  Igal Brener,et al.  Active tuning of all-dielectric metasurfaces. , 2015, ACS nano.

[41]  A. Arbabi,et al.  Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. , 2014, Nature nanotechnology.

[42]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[43]  Jean-Jacques Greffet,et al.  Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures. , 2013, Nano letters.

[44]  I. White,et al.  Free Space Communications With Beam Steering a Two-Electrode Tapered Laser Diode Using Liquid-Crystal SLM , 2013, Journal of Lightwave Technology.

[45]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[46]  N Engheta,et al.  Electronically controlled optical beam-steering by an active phased array of metallic nanoantennas. , 2013, Optics express.

[47]  Chennupati Jagadish,et al.  Electro-optical switching by liquid-crystal controlled metasurfaces. , 2013, Optics express.

[48]  Michael R. Watts,et al.  Large-scale nanophotonic phased array , 2013, Nature.

[49]  X. Zhang,et al.  Ultra-compact silicon nanophotonic modulator with broadband response , 2012 .

[50]  V. Pruneri,et al.  Fast beam steering with full polarization control using a galvanometric optical scanner and polarization controller. , 2012, Optics express.

[51]  Qiaofeng Tan,et al.  Dual-polarity plasmonic metalens for visible light , 2012, Nature Communications.

[52]  Yi-Hsin Lin,et al.  A Review of Electrically Tunable Focusing Liquid Crystal Lenses , 2011 .

[53]  L. Coldren,et al.  Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator. , 2011, Optics express.

[54]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[55]  Brent Schwarz,et al.  LIDAR: Mapping the world in 3D , 2010 .

[56]  Mattias Goksör,et al.  Improved beam steering accuracy of a single beam with a 1D phase-only spatial light modulator. , 2008, Optics express.

[57]  Edward A. Watson,et al.  Wide-angle decentered lens beam steering for infrared countermeasures applications , 2004 .

[58]  Luke P. Lee,et al.  Tunable liquid-filled microlens array integrated with microfluidic network. , 2003, Optics express.

[59]  Philip J. Bos,et al.  Wide-angle achromatic prism beam steering for infrared countermeasure applications , 2003 .

[60]  Zvonko G. Vranesic,et al.  Field-Programmable Gate Arrays , 1992 .

[61]  Gary J. Swanson,et al.  Binary Optics Technology: Theoretical Limits on the Diffraction Efficiency of Multilevel Diffractive Optical Elements , 1991 .

[62]  G. Swanson Binary Optics Technology: The Theory and Design of Multi-Level Diffractive Optical Elements , 1989 .

[63]  Eza,et al.  High sensitivity active flat optics optical phased array receiver with a two-dimensional aperture , 2018 .

[64]  R. Dean Adams,et al.  High Performance Memory Testing: Design Principles, Fault Modeling and Self-Test , 2002 .

[65]  Marin Golub,et al.  Adaptive Genetic Algorithm , 1999 .

[66]  Jonathan Rose,et al.  Introduction to FPGAs , 1992 .