Working memory for order information: Multiple cognitive and neural mechanisms

Working memory for order information is mediated by different cognitive mechanisms that rely on different neural circuits. Here we discuss evidence that order memory involves mechanisms that range from general supervisory processes to process that maintenance fine-grained temporal position information. We suggest that neural regions-including the prefrontal cortex, motor cortex, parietal cortex and medial temporal structures-operate at different levels and processing stages to give rise to working memory for order information.

[1]  G. Orban,et al.  Parietal Representation of Symbolic and Nonsymbolic Magnitude , 2003, Journal of Cognitive Neuroscience.

[2]  N. Burgess,et al.  Memory for serial order: A network model of the phonological loop and its timing , 1999 .

[3]  S. Dehaene,et al.  Event-related fMRI analysis of the cerebral circuit for number comparison. , 1999, Neuroreport.

[4]  R. Henson Positional information in short-term memory: Relative or absolute? , 1999, Memory & cognition.

[5]  C. Marshuetz,et al.  Order information in working memory: an integrative review of evidence from brain and behavior. , 2005, Psychological bulletin.

[6]  Philippe Pinel,et al.  Distributed and Overlapping Cerebral Representations of Number, Size, and Luminance during Comparative Judgments , 2004, Neuron.

[7]  L. Squire,et al.  The medial temporal lobe memory system , 1991, Science.

[8]  A. Miyake,et al.  Models of Working Memory: Mechanisms of Active Maintenance and Executive Control , 1999 .

[9]  R. Engle,et al.  Is working memory capacity task dependent , 1989 .

[10]  H. Eichenbaum,et al.  Critical role of the hippocampus in memory for sequences of events , 2002, Nature Neuroscience.

[11]  Heikki Tanila,et al.  Hippocampal place cells can develop distinct representations of two visually identical environments , 1999, Hippocampus.

[12]  A. Glenberg,et al.  A temporal distinctiveness theory of recency and modality effects. , 1986, Journal of experimental psychology. Learning, memory, and cognition.

[13]  S. Dehaene,et al.  Differential Contributions of the Left and Right Inferior Parietal Lobules to Number Processing , 1999, Journal of Cognitive Neuroscience.

[14]  Edward K. Vogel,et al.  The capacity of visual working memory for features and conjunctions , 1997, Nature.

[15]  R P Kesner,et al.  Short-term memory for duration and distance in humans: role of the hippocampus. , 2001, Neuropsychology.

[16]  N. Cowan The magical number 4 in short-term memory: A reconsideration of mental storage capacity , 2001, Behavioral and Brain Sciences.

[17]  B. Murdock,et al.  Memory for Serial Order , 1989 .

[18]  Lars Nyberg,et al.  Brain Regions Differentially Involved in Remembering What and When: a PET Study , 1997, Neuron.

[19]  David S. Olton,et al.  Hippocampal function and interference , 1994 .

[20]  R P Kesner,et al.  Memory for novel and familiar spatial and linguistic temporal distance information in hypoxic subjects , 1995, Journal of the International Neuropsychological Society.

[21]  R P Kesner,et al.  Memory for spatial location as a function of temporal lag in rats: role of hippocampus and medial prefrontal cortex. , 1994, Behavioral and neural biology.

[22]  Stanislas Dehaene,et al.  The Organization of Brain Activations in Number Comparison: Event-Related Potentials and the Additive-Factors Method , 1996, Journal of Cognitive Neuroscience.

[23]  J. Jonides,et al.  Storage and executive processes in the frontal lobes. , 1999, Science.

[24]  N. Burgess,et al.  Toward a network model of the articulatory loop , 1992, Connectionist psychology: A text with readings.

[25]  James L. McClelland,et al.  Hippocampal conjunctive encoding, storage, and recall: Avoiding a trade‐off , 1994, Hippocampus.

[26]  R. G. Crowder,et al.  Schedules of presentation and temporal distinctiveness in human memory. , 1990 .

[27]  L. Squire,et al.  The Neuropsychology of Memory , 1990 .

[28]  Robert H. Logie,et al.  Working Memory and Thinking: Current Issues In Thinking And Reasoning , 1998 .

[29]  H. Simon,et al.  Perception in chess , 1973 .

[30]  Takashi Tsukiura,et al.  Neural Basis of Temporal Context Memory: A Functional MRI Study , 2001, NeuroImage.

[31]  J. Driver,et al.  Control of Cognitive Processes: Attention and Performance XVIII , 2000 .

[32]  M R D'Amato,et al.  Representation of serial order in monkeys (Cebus apella). , 1988, Journal of experimental psychology. Animal behavior processes.

[33]  ROBERT S. MOYER,et al.  Time required for Judgements of Numerical Inequality , 1967, Nature.

[34]  John Jonides,et al.  Processes of Working Memory in Mind and Brain , 2005 .

[35]  Stanislas Dehaene,et al.  The Time Course of Parietal Activation in Single-digit Multiplication: Evidence from Event-related Potentials , 1997 .

[36]  P. Carpenter,et al.  Individual differences in working memory and reading , 1980 .

[37]  N Burgess,et al.  Recoding, storage, rehearsal and grouping in verbal short-term memory: an fMRI study , 2000, Neuropsychologia.

[38]  W. A. Wickelgren,et al.  Rehearsal Grouping and Hierarchical Organization of Serial Position Cues in Short-Term Memory , 1967, The Quarterly journal of experimental psychology.

[39]  E. Rolls A theory of hippocampal function in memory , 1996, Hippocampus.

[40]  B. Milner,et al.  Interhemispheric differences in the localization of psychological processes in man. , 1971, British medical bulletin.

[41]  John R. Anderson,et al.  A Production System Theory of Serial Memory , 1997 .

[42]  M. D’Esposito,et al.  The neural basis of the central executive system of working memory , 1995, Nature.

[43]  G D Brown,et al.  Oscillator-based memory for serial order. , 2000, Psychological review.

[44]  R P Kesner,et al.  The Temporal‐Distance Effect in Subjects with Dementia of the Alzheimer Type , 1995, Alzheimer disease and associated disorders.

[45]  Paul E. Gilbert,et al.  The role of the hippocampus in memory for the temporal order of a sequence of odors. , 2002, Behavioral neuroscience.

[46]  Stanislas Dehaene,et al.  Cerebral networks for number processing: Evidence from a case of posterior callosal lesion , 1996 .

[47]  P. Pala,et al.  Domain interactions of H–2 class I antigens alter cytotoxic T-cell recognition sites , 1984, Nature.

[48]  D. Stuss,et al.  Neuropsychological studies of the frontal lobes. , 1984, Psychological bulletin.

[49]  Raymond P. Kesner,et al.  Item and order dissociation in humans with prefrontal cortex damage , 1994, Neuropsychologia.

[50]  Sheng He,et al.  Functional comparison of primacy, middle and recency retrieval in human auditory short-term memory: an event-related fMRI study. , 2003, Brain research. Cognitive brain research.

[51]  D. LeBihan,et al.  Modulation of Parietal Activation by Semantic Distance in a Number Comparison Task , 2001, NeuroImage.

[52]  John Jonides,et al.  Order Information in Working Memory: fMRI Evidence for Parietal and Prefrontal Mechanisms , 2000, Journal of Cognitive Neuroscience.

[53]  S. Sternberg Retrieval of contextual information from memory , 1967 .

[54]  R. Passingham,et al.  Prefrontal interactions reflect future task operations , 2003, Nature Neuroscience.

[55]  A. Georgopoulos,et al.  Motor cortical encoding of serial order in a context-recall task. , 1999, Science.

[56]  Jennifer A. Mangels,et al.  Strategic Processing and Memory for Temporal Order in Patients With Frontal Lobe Lesions , 1997 .

[57]  Shane T. Mueller,et al.  Models of Working Memory: Insights into Working Memory from the Perspective of the EPIC Architecture for Modeling Skilled Perceptual-Motor and Cognitive Human Performance , 1998 .

[58]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[59]  J Ryan,et al.  Grouping and Short-Term Memory: Different Means and Patterns of Grouping , 1969, The Quarterly journal of experimental psychology.

[60]  W. Estes,et al.  Item and order information in short-term memory: Evidence for multilevel perturbation processes. , 1981 .

[61]  Gurindar S. Sohi,et al.  Memory systems , 1996, CSUR.

[62]  Arthur P. Shimamura,et al.  Memory for the temporal order of events in patients with frontal lobe lesions and amnesic patients , 1990, Neuropsychologia.