Finding Real-Valued Single-Source Shortest Paths in o(n3) Expected Time

Given ann-vertex,m-edge directed networkGwith real costs on the edges and a designated source vertexs, we give a new algorithm to compute shortest paths froms. Our algorithm is a simple deterministic one withO(n2logn) expected running time over a large class of input distributions. This is the first strongly polynomial algorithm in over 35 years to improve upon some aspect of theO(nm) running time of the Bellman?Ford algorithm. The result extends to anO(n2logn) expected running time algorithm for finding the minimum mean cycle, an improvement over Karp'sO(nm) worst-case time bound when the underlying graph is dense. Both of our time bounds are shown to be achieved with high probability.

[1]  Robert E. Tarjan,et al.  Faster Scaling Algorithms for Network Problems , 1989, SIAM J. Comput..

[2]  Alan M. Frieze,et al.  The shortest-path problem for graphs with random arc-lengths , 1985, Discret. Appl. Math..

[3]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[4]  Noga Alon,et al.  On the Exponent of the All Pairs Shortest Path Problem , 1991, J. Comput. Syst. Sci..

[5]  David R. Karger,et al.  An Õ(n2) algorithm for minimum cuts , 1993, STOC.

[6]  David R. Karger,et al.  A new approach to the minimum cut problem , 1996, JACM.

[7]  Alistair Moffat,et al.  An All Pairs Shortest Path Algorithm with Expected Time O(n² log n) , 1987, SIAM J. Comput..

[8]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[9]  Philip M. Spira,et al.  A New Algorithm for Finding all Shortest Paths in a Graph of Positive Arcs in Average Time 0(n2 log2n) , 1973, SIAM J. Comput..

[10]  Refael Hassin,et al.  On Shortest Paths in Graphs with Random Weights , 1985, Math. Oper. Res..

[11]  D. R. Fulkerson,et al.  Flows in Networks. , 1964 .

[12]  G. Dantzig On the Shortest Route Through a Network , 1960 .

[13]  Richard M. Karp,et al.  A characterization of the minimum cycle mean in a digraph , 1978, Discret. Math..

[14]  John S. Carson,et al.  A Note on Spira's Algorithm for the All-Pairs Shortest-Path Problem , 1977, SIAM J. Comput..

[15]  Andrew V. Goldberg,et al.  Scaling algorithms for the shortest paths problem , 1995, SODA '93.

[16]  Robert E. Tarjan,et al.  Fibonacci heaps and their uses in improved network optimization algorithms , 1987, JACM.

[17]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[18]  Richard M. Karp,et al.  An algorithm to solve the m × n assignment problem in expected time O(mn log n) , 1980, Networks.

[19]  Raimund Seidel,et al.  On the all-pairs-shortest-path problem , 1992, STOC '92.

[20]  Clifford Stein,et al.  Finding Real-Valued Single-Source Shortest Paths , 1996, IPCO.

[21]  Peter A. Bloniarz A Shortest-Path Algorithm with Expected Time O(n2 log n log* n) , 1983, SIAM J. Comput..

[22]  Alistair Moffat,et al.  An O(n² log log log n) Expected Time Algorithm for the all Shortest Distance Problem , 1980, MFCS.

[23]  Philip N. Klein,et al.  A randomized linear-time algorithm to find minimum spanning trees , 1995, JACM.

[24]  Harold N. Gabow,et al.  Scaling algorithms for network problems , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[25]  Narsingh Deo,et al.  Shortest-path algorithms: Taxonomy and annotation , 1984, Networks.

[26]  Harry H. Tan,et al.  Shortest Paths in Random Weighted Graphs , 1995, COCOON.

[27]  Kurt Mehlhorn,et al.  On the all-pairs shortest-path algorithm of Moffat and Takaoka , 1997, Random Struct. Algorithms.