A radial basis function method for fractional Darboux problems

Abstract In this paper, a radial basis function (RBF) collocation known as Kansa’s method has been extended to solve fractional Darboux problems. The fractional derivatives are described in the Caputo sense. Integration of radial functions that appears due to fractional derivatives have been dealt using Gauss–Jacobi quadrature method. The equation has been linearized using successive approximation. A few test problems have been solved and compared with available solutions. The effect of RBF shape parameter on accuracy and convergence has also been discussed.

[1]  J. T. Day,et al.  A Gaussian quadrature method for the numerical solution of the characteristic intitial value problem _ , 1963 .

[2]  H. R. Hicks,et al.  Numerical methods for the solution of partial difierential equations of fractional order , 2003 .

[3]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[4]  Hermann Brunner,et al.  Numerical simulations of 2D fractional subdiffusion problems , 2010, J. Comput. Phys..

[5]  Mehdi Dehghan,et al.  An implicit RBF meshless approach for solving the time fractional nonlinear sine-Gordon and Klein–Gordon equations , 2015 .

[6]  Hamed Rabiei,et al.  On the new variable shape parameter strategies for radial basis functions , 2015 .

[7]  Scott A. Sarra,et al.  A random variable shape parameter strategy for radial basis function approximation methods , 2009 .

[8]  M. K. Jain,et al.  Cubature method for the numerical solution of the characteristic initial value problem , 1968 .

[9]  Cécile Piret,et al.  A radial basis functions method for fractional diffusion equations , 2013, J. Comput. Phys..

[10]  Xiaohong Joe Zhou,et al.  Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation. , 2008, Journal of magnetic resonance.

[11]  C.M.C. Roque,et al.  Numerical experiments on optimal shape parameters for radial basis functions , 2009 .

[12]  Yan Li,et al.  On choosing the location of the sources in the MFS , 2015, Numerical Algorithms.

[13]  Abdul-Majid Wazwaz On the numerical solution of the Goursat problem , 1993 .

[14]  Fawang Liu,et al.  An implicit RBF meshless approach for time fractional diffusion equations , 2011 .

[15]  Wen Chen,et al.  Boundary particle method for Laplace transformed time fractional diffusion equations , 2013, J. Comput. Phys..

[16]  S. Haq,et al.  RBFs approximation method for time fractional partial differential equations , 2011 .

[17]  D. J. Evans,et al.  Numerical solution of the Goursat problem by a nonlinear trapezoidal formula , 1988 .

[18]  A. Vityuk,et al.  The Darboux problem for an implicit fractional-order differential equation , 2011 .

[19]  Leevan Ling,et al.  Method of approximate particular solutions for constant- and variable-order fractional diffusion models , 2015 .

[20]  Wen Chen,et al.  Numerical solution of fractional telegraph equation by using radial basis functions , 2014 .

[21]  R. Schaback,et al.  On the fractional derivatives of radial basis functions: Theories and applications , 2019, Mathematical Methods in the Applied Sciences.

[22]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.

[23]  Mouffak Benchohra,et al.  Topics in Fractional Differential Equations , 2012 .

[24]  Nam Mai-Duy,et al.  Approximation of function and its derivatives using radial basis function networks , 2003 .

[25]  James T. Day,et al.  A Runge-Kutta Method for the Numerical Solution of the Goursat Problem in Hyperbolic Partial Differential Equations , 1966, Comput. J..

[26]  Y. L. Wu,et al.  Development of RBF-DQ method for derivative approximation and its application to simulate natural convection in concentric annuli , 2002 .

[27]  Gregory E. Fasshauer,et al.  On choosing “optimal” shape parameters for RBF approximation , 2007, Numerical Algorithms.

[28]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[29]  M. Dehghan,et al.  Numerical solution of a non-classical two-phase Stefan problem via radial basis function (RBF) collocation methods , 2016 .

[30]  Bo Sun,et al.  Numerical solution of the Goursat problem on a triangular domain with mixed boundary conditions , 2011, Appl. Math. Comput..

[31]  Three Nonlinear Initial Value Problems of the Hyperbolic Type , 1977 .

[32]  Mehdi Dehghan,et al.  The method of variably scaled radial kernels for solving two-dimensional magnetohydrodynamic (MHD) equations using two discretizations: The Crank-Nicolson scheme and the method of lines (MOL) , 2015, Comput. Math. Appl..

[33]  Shmuel Rippa,et al.  An algorithm for selecting a good value for the parameter c in radial basis function interpolation , 1999, Adv. Comput. Math..

[34]  M. Dehghan,et al.  Numerical solution of the system of second-order boundary value problems using the local radial basis functions based differential quadrature collocation method , 2013 .

[35]  S. Ray Fractional Calculus with Applications for Nuclear Reactor Dynamics , 2015 .

[36]  Hongguang Sun,et al.  Fractional diffusion equations by the Kansa method , 2010, Comput. Math. Appl..

[37]  Hao Zhang,et al.  The modeling of the fractional-order shafting system for a water jet mixed-flow pump during the startup process , 2015, Commun. Nonlinear Sci. Numer. Simul..

[38]  Mostafa Abbaszadeh,et al.  The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation arising in quantum mechanics , 2013 .

[39]  Bengt Fornberg,et al.  Scattered node compact finite difference-type formulas generated from radial basis functions , 2006, J. Comput. Phys..

[40]  Guofei Pang,et al.  Space-fractional advection-dispersion equations by the Kansa method , 2015, J. Comput. Phys..

[41]  E. Kansa MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .

[42]  A. R. Gourlay A note on trapezoidal methods for the solution of initial value problems , 1970 .

[43]  Richard L. Magin,et al.  Fractional calculus models of complex dynamics in biological tissues , 2010, Comput. Math. Appl..